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MEASUREMENTS OF THE VISCOMETRIC FUNCTIONS
FOR A FLUID IN STEADY SHEAR FLOWS
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Department of Chemical Engineering and Rheology Research Center,
Unuwersity of Wisconsin, Madison, Wisconsin 53706

) §
C

. ~ (Communicated by T. B. Benjamin, F.R.S.—Received 11 March 1971)
<
S E CONTENTS
[~ = PAGE PAGE
—_—
S3N@) 1. INTRODUCTION 508 8.1. Determination of py (s) 532
= O 9. THEORETICAL ASPECTS 510 8.2. The normal stress at the rim 535
=« 2.1. The cone-and-plate 8.3. Concentric-cylinders
3 ‘2 viscometer 511 measurements 537
EQ 2.2. Torsional flow between 9. THE SECONDARY NORMAL-STRESS
55 . parallel plates 514 DIFFERENCE 540
85) > 2.3. Flow between concentric 9.1. The Jackson & Kaye method 541
:'Z cyhndel‘rs 515 9.2. The Marsh & Pearson
EE 2.4. Stress-optical methods 516 method 549
3. EXPERIMENTAL APPARATUS 517 9.3. The Kotaka ¢ al. method 543
4. PREPARATION AND STABILITY OF 9.4. Discussion 544
THE LIQUID 521 10. IN CONCLUSION 546
4.1. Preparation 521 A 548
4.2. Stability 522 PPENDIXES
A. THE INTRINSIC ERROR IN THE USE
5. MEASUREMENTS OF THE SHEAR~ o OF A CAVITY TO MEASURE p22 548
STRESS FUNCTION 523 B. THE TEST USED BY MARKOVITZ
6. THE PRIMARY NORMAL-STRESS (1965 a) 551
DIFFERENCE 525 C. THE INFLUENCE OF THE SEA OF
4 7. THE NORMAL-STRESS DISTRIBUTION LIQUID ON j(R) 552
q‘ Pas(r) 528 D. AN ESTIMATE OF THE SECONDARY
1 NORMAL-STRESS DIFFERENCE 553

8. THE ERROR ARISING FROM THE
HOLES 532 REFERENCES 555

"This paper describes a series of experiments in which the three material functions of steady viscometric
flows were measured for a given polyisobutene solution. A number of instruments and measuring techniques
were used in order to check the experimental method.

The shear stress was determined from the torque transmitted by the fluid in a cone-and-plate apparatus
and in Couette flow between concentric cylinders. The results obtained from these measurements were in
good agreement with each other.

The primary normal-stress difference was determined from the normal force acting on the plate of a
cone-and-plate apparatus, and from stress-optical measurements on Couette flow between concentric
cylinders. These results are in good agreement with each other. Detailed measurements of the distribution
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508 W.G.PRITCHARD

of the normal stress acting on the plate of the cone-and-plate apparatus were made for three cone angles
and for two boundary configurations at the rim of the apparatus: from these results a combination of the
primary and the secondary normal-stress differences was deduced, thereby making possible the com-
putation of the secondary normal-stress difference.

When the normal stress acting on a rigid surface is measured by means of a hole leading to a pressure
transducer the results are in error by an amount roughly proportional to the primary normal-stress
difference of the fluid (cf. Kaye, Lodge & Vale 1968). In the present experiments this error was determined
from measurements of the distribution of the normal stress acting on the plates of a plate-and-plate
apparatus, together with the assumption that the error is a function only of the shear rate at the position of
the hole in the undisturbed viscometric flow. The values of the measuring error thus obtained are in good
agreement with measurements made in Couette flow between concentric cylinders.

The secondary normal-stress difference, P,, was measured in a number of different ways. From the
results it is suggested that the methods of Jackson & Kaye and of Marsh & Pearson may be imprecise and,
in particular, may yield incorrect values for P,. A new, direct, method of estimating P,, suggested by
Higashitani & Pritchard (1971) and outlined in appendix A, may provide a more convenient means of
determining P,.

1. INTRODUCTION

The measurements described herein are the results of an extensive series of experiments aimed
at determining the material functions for viscometric flows of a given polymer solution. The
experiments have been carried out on a number of different instruments, and by a number of
different experimenters, in an attempt to isolate any discrepancies or any sources of error among
the measurements. In many respects this work is similar to a set of measurements conducted by
Professor A. S. Lodge, the major part of which is described by Kaye, Lodge & Vale (1968); but
since experience suggests that extreme caution is needed with experiments on highly nonlinear
fluids, we have in the main followed the previous experiments, but with the present fluid we have
made a far more detailed and comprehensive set of measurements than hitherto.

When investigating the rheological properties of liquids it is usually assumed that the liquid is
homogeneous, isotropic and incompressible, and that the forces acting within the body of the
fluid can be described by a symmetric stress-tensor field, p. If a further assumption is made that
the value of the stress tensor at a given point in the fluid is determined, to within an additive
isotropic pressure, by the shape history of a small element surrounding that point there results
a class of rheological equations of state considered by Oldroyd (1950), a class which includes (see
Lodge & Stark 19770) the simple fluid defined by Noll (1958).1 Thus, for isothermal motions of these
Auids, ] the stress at a given time ¢ is related to the strain history by some operator &, so that

357 {(p);, strain} = 0. (1.1)
t'=—o0 t'—>t
If, however, we restrict our attention to a particular class of steady shear flows, called viscometric
flows, in which the shear rate at a particleis a constant in time, the operator & is greatly simplified
and becomes an ordinary function. All viscometric flows of a simple fluid may be characterized
completely by the three material functions pgy, f1; — fros and pag — pg3 (where the p; are the physical
components of the stress tensor, p), which are functions only of the local shear rate (see Coleman &
Noll 1959; Lodge 1964, p. 343). It is an inevitable consequence of the simple-fluid assumption
that the three material functions are independent of the kind of viscometric flow in which they
are measured and are completely determined by the local shear rate. Hence in view of the
extreme difficulties of verifying experimentally the basic assumptions underlying the theory, this

1 In this paper we shall use the term ‘simple fluid” to refer to the class of fluids defined by Oldroyd.
1 Ttis assumed throughout this paper that heat generation and temperature variations are negligible.
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corollary provides an indirect check of the assumptions. On the other hand, given a sample of a
simple fluid, it is of interest to know which are the casiest and most reliable methods of deter-
mining the material functions for viscometric flows. To date only two experimental determina-
tions of the material functions have been made in which sufficient measurements were carried out
to check the reliability of the results. One set of measurements by Markovitz (1965a) (and see in
Coleman, Markovitz & Noll 1966) determined the two normal-stress differences from the
following:

(a) The measurement of the difference in the stress py,1 in Couette flow between two con-
centric cylinders. This should give a direct measure of p;; — fg,.

(b) The gradient of the stress p,, acting on the plate of a cone-and-plate viscometer. This gives
a measure of the combination p; + pge — 2pss.

By using these two sets of results it is possible to make a prediction of the stress p,, acting on the
plates of a plate-and-plate viscometer, and Markovitz found such a prediction to agree extremely
well with the measured values. However, in the experiments described herein, agreement has not
been attained with this test, and it would appear that Markovitz’s result is anomalous.

The other detailed experimental check of the internal consistency of various measurements of
the material functions has, as already indicated, been carried out by Professor A. S. Lodge, and
the main results of this work are described in Kaye et al. (1968). It was found that agreement
among the various estimates of p,; — poy and pyy —pag could not be attained unless a systematic
error was introduced arising from the use of ‘small’ holes to measure the stress py,. (In these
experiments estimates of p,, were made by assuming it to be equal to the normal stress acting at
the bottom of a cavity in the wall of the viscometer, rather than making the measurement at the
wall itself). The introduction of this so-called ‘hole effect’ explained all their experimental
discrepancies, except for one estimate of p,, —pgs, which is discussed below. Thus Kaye et al.
suggest that estimates of p,, made from stress measurements at the bottom of a cavity in the
surface of a viscometer give rise to important errors (about 0.2 (p,, — ps,) in magnitude for their
fluid), and that the error depends only on the shear rate in the undisturbed fluid at the wall of the
viscometer. More recent work by Tanner & Pipkin (1969) and by Pritchard (1970) has proposed
an explanation of this phenomenon, and Tanner & Pipkin were able to show for slow, two-
dimensional, flows of a second-order fluid, that the magnitude of the error py in the estimate of
Doz 18 (11— Pas), when the hole is very deep and symmetrical. Physically the error arises because
of an additional local curvature imposed on the streamlines of the basic, viscometric, flow by the
presence of the cavity. We have already mentioned for the case of Couette flow between concentric
cylinders that the difference in p,, across the gap is a measure of the normal-stress difference
11— Pag; thus, in a similar fashion, the fluid flow within the cavity gives rise to a value of p,, at the
bottom of the cavity which is different from that at the opening of the cavity, and at the wall of the
viscometer, and this difference is directly related to f,; — pes.1 Moreover, for slow, two-dimen-
sional, flows of a Newtonian fluid it follows that no error is introduced when p,, is measured in this
way. An interesting outcome of these arguments is that, for very deep and symmetrical holes, the
measured value of p,, is completely independent of the actual shape of the cavity. This result is
strictly applicable only for second-order fluids, yet the experiments of Pritchard (1970) indicate,
for a fluid for which the second-order approximation is not valid, that the measured value of p,,

T Throughout the paper we use the terminology of Lodge (1964). Thus, with respect to the orthogonal curvilinear
coordinate system (x%, x2, x%), the shear flow under consideration is (¥*(x%), 0, 0), where v is the velocity.
1 This argument is described in more detail in appendix A.

38-2
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(for deep cavities and for a given shear rate at the wall of the viscometer) is independent of a very
wide range of cavity shapes.

In their experiments Kaye ¢z al. (1968) were able to make anindependent check of the measuring
error, py, which confirmed their hypothesis. Thus, in summary, Kaye ef al. made two separate
measurements of p,, — pys and of p,;, both measurements of each quantity being in agreement;
two estimates of py, which are in good agreement; and two measurements of py, — ps4, which are
not in agreement with each other, but it is possible that this difference could be attributed to
experimental inaccuracies rather than to a systematic discrepancy.

One of the reasons for undertaking the present measurements was to attempt to confirm, using
a slightly different liquid, the findings of Kaye ¢t al. (1968). In view of the unexpected results one
can often obtain with non-Newtonian fluids it was felt that such a check would be of value.
Moreover, with these new measurements, it has been possible to investigate in a fair amount of
detail a number of methods of determining p,, — p35 in an attempt to explain, or to confirm, the
remaining inconsistency noted by Kaye ef al. (1968). Unfortunately it has not been possible to
resolve this disagreement, in that similar discrepancies have been found once again; these
anomalies cannot be accounted for.

Because of the large number of possible sources of error involved with the present measurements
we have tried, in this paper, to give a fairly detailed account of the whole experiment, rather than
err on the side of terseness. Thus, in addition to the main corpus of the work carried out in
Manchester there are also presented, for comparison, the results of measurements on the same
fluid made on two commercially produced rheogoniometers.

2., THEORETICAL ASPECTS

The theory of viscometric flows of simple fluids has been discussed in detail by many authors
(see, for example Lodge 1964; Coleman et al. 1966) and hence in this section we discuss briefly
only the results of direct relevance to the experiments. The notation of Lodge (1964) is used
throughout.

As indicated in the introduction, a viscometric flow is one for which the rate of shear at a
particle is a constant for the entire history of the fluid. Thus a steady flow belongs to the class of
viscometric flows if an orthogonal curvilinear coordinate system (x1, ¥%, x%) can be found such that
the contravariant components of the velocity field, with respect to the system, are (v'(x2), 0, 0).T
Of course these flows must be dynamically admissible, in the sense that the velocity field and the
stress distribution satisfy the equations of motion.} Accordingly some examples of viscometric
flows are: Couette flow between concentric cylinders; Poiseuille flow; and, neglecting inertial
effects, flows in cone-and-plate and plate-and-plate viscometers (however the viscometric flow
between a cone and a plate is dynamically admissible only in the limit of very small cone angles).
We shall discuss herein experiments made with each one of these flows.

But the basis of the theory lies in the simple-fluid assumptions, namely that the fluid is homo-
geneous, isotropic and incompressible; that the forces acting within the fluid may be described
by a symmetric stress-tensor field, p; and that the value of the stress tensor at a point in the fluid
is determined, to within an additive isotropic pressure, by the shape history of a small element

+ This description of viscometric flows is not exhaustive, though it includes most of the viscometric flows and
certainly all the flows we shall consider herein. A complete description is given by Coleman et al. (1966) and by
Pipkin (1968).

4 Itis assumed that there is no slip between the fluid and a solid surface.
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surrounding that point. The definitions of homogeneity and isotropy are interrelated and are
probably most easily described in the way discussed by Oldroyd (1950) (and see Lodge 1964,
p. 331). Oldroyd describes the stress tensor at a point in terms of a convected coordinate system,
in which the coordinate surfaces &% == constant are chosen as surfaces drawn in the material (and
deforming continuously with it), and the £ and the time ¢ are taken as independent variables.
This procedure avoids any dependence on the absolute motion in space of a material element,
or on the conditions in other material elements. Thus, with respect to this coordinate system,
there will arise in (1.1) a set of physical constants describing the particular material under con-
sideration. These quantities are strictly constant tensors associated with the material in the
‘small element’ containing the particle £ (and are invariant in time). Now, the material is said
to be isotropic if these physical constants are expressible as scalar body fields (together with the
body metric field if necessary). A homogeneous material is one in which the physical constants may
be described by body fields whose covariant derivative (formed with the use of the body metric
tensor) is zero. Accordingly an isotropic material which is homogeneous in one state, say a rest
configuration, is homogeneous for all time: the material constants are described by scalar fields
and hence the covariant derivative reduces to the partial derivative 0/0&? and is independent of
the body metric tensor.

The symmetry of the stress tensor follows from the conservation of angular momentum, ¢f we
assume there are no couple stresses within the body of the fluid. There is no physical reason a prior: why this
assumption should be valid, but in view of its success in other areas of continuum mechanics we
shall retain it until forced to reconsider.

The assumption that the stress tensor at a point in the fluid is determined by the shape history
of a small material element surrounding that point is crucial. Materials for which this is not valid,
in that the stress tensor is influenced by neighbouring material elements,] are usually termed
non-simple or complex fluids. On a continuum or macroscopic basis the so-called ‘ material elements’
are, in some sense, infinitesimally small; but from a physical viewpoint they must be sufficiently
large that statistical averages, made on a molecular basis, are independent of the volume of the
chosen element. To indicate the kind of length scales influencing these considerations it is worth
noting that the radius of gyration of the (high molecular weight) polymer molecules used in the
current experiments is of the order of 0.1 um, but this figure may be somewhat misleading when
the solutions are so concentrated that the polymer coils become extensively intertwined.

We shall now consider the actual stress distributions arising in the viscometers used in the

experiments.
2.1. The cone-and-plate viscometer

(a) Introductory comments

We consider a cone of radius R to be rotating about its axis at a uniform angular velocity £; the
apex of the coneis a distance ¢ above a stationary flat plate, as indicated in the sketch of figure 1a.}
For this geometric arrangement the conical surfaces z = k(¢ +rtan ), 0 < k < 1, are assumed to
rotate effectively as rigid surfaces with a constant angular velocity about the axis; r is the radius
from the axis. Apart from a region near the rim of the cone, Marsh & Pearson (1968) have pointed
out, on the basis of a lubrication approximation (see Pearson 1967), that this flow is viscometric,

1 An example of such a fluid is one whose rheological equations of state include covariant derivatives at the time ¢
of the body stress tensor or the body metric tensor at time ¢’.

1 Although it is not shown in figure 1, the apex of each cone used in the current experiments had been ground

off and hence it was possible to use some negative values of ¢. These truncations obviously introduce an error to the
experiments, and we shall discuss this below.
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at least in the asymptotic limit of small cone angles (£), and for small values of the parameter ¢/R.
Having thus prescribed a velocity field in the viscometer we must verify that it is admissible in
that it satisfies the equations of motion and continuity. The continuity condition is satisfied
identically by the velocity field, but the equations of motion are satisfied only under the following
conditions:

(i) That inertial effects are negligible, the so-called slow-flow approximation. The largest
Reynolds number arising in these experiments, based on the velocity and the gap width at the
rim of the viscometer, is about 0.01.7

1382 1X9)
cone\, ——— R ——> cone\
\ \ — Al < h hiy-——
Chiquia BT o
Z z A 7= 4 Z
platef plate A !
I
@ ()

F1cure 1. Schematic diagram of the cone-and-plate viscometer. (a) A configuration of the liquid referred to as the
‘free-boundary state’; (b) an alternative arrangement referred to as a ‘sea of liquid’.

(i) That the boundary conditions at the liquid/air interface are satisfied without the intro-
duction of secondary flows. In general this is not possible and hence the two kinds of interface
shown in figure 1 have been used to investigate the importance of this assumption.}

(iii) That terms in the equations of motion of order tan? # (separate terms in the relation being
of order 1) may be neglected (see Coleman et al. (1966), and Marsh & Pearson (1968) for details
of this approximation). We shall check the importance of this effect by making measurements
with cones of differing angles.§

Having made these assumptions it follows that the distribution of normal stresses acting on the
plate satisfies the relation (see Marsh & Pearson 1968)

Opss _ pri—pss | tanB(pas—Pss)
o - fute, B flbucte) @)

+ Kaye (1965) has made an approximate analysis of this inertial correction for the case of a Newtonian fluid in a
cone-and-plate viscometer. Assuming the resultant secondary flows are much smaller in magnitude than the
primary flow Kaye estimates that this secondary flow makes a contribution to the stress p,, of magnitude 5%pr2022.
The largest value of this quantity, in any of the experiments, is 8 dyn/cm? which is less than 0.1 9, of the value
measured in that experiment. If this correction were applied it would increase the estimate of py; + gy — 2p34 (see (2.4),
to follow) and would reduce the estimate of p;;, — p,, (see (2.6)). A contribution to p,, also arises from the centrifugal
forces in the rotating liquid (see Walters & Waters 1968; Adams & Lodge 1964); this contribution is also of negligible
importance in the present measurements.

1 The errors introduced by the secondary flows generated near the rim are difficult to calculate theoretically,
however Griffiths & Walters (1970) have made an estimate of their magnitudes for the sea-of-liquid configuration.
Their calculation is for a second-order fluid and the upper surface of the cone is assumed to form part of a sphere.
For the particular fluid chosen by Griffiths & Walters it is estimated that the error in the normal force on the plate,
arising from the unwanted secondary flows, is less than 0.1 %, when the cone angle # < 4°: they accordingly con-
clude that both the normal-stress distribution and total force measurements for determining normal-stress differences
are not likely to be unduly affected by edge effects.

§ For a second-order fluid Kaye (1965) has made an estimate of the correction to f,, arising from this source. The
calculations suggest, for small cone angles, that the correction varies as the logarithm of the radius and hence would
lead to a systematic error, dependent only on the cone angle, in our estimate of py;+ pay — 2p33 (cf. (2.4)). Theratio
of this correction to the primary term of p,, is only §42%: thus for the 5.67° cone there would be an error of 0.57 9,
in the estimate of py; + pas — 2hys; for the 3.26° cone the error is 0.19 %,. If a correction of this kind were made it
would reduce our estimate of py; + pag — 2psgs.
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with the boundary condition at the rim of the cone assumed to be

p3s(R) = 0. (2.2)
(The ambient pressure may be chosen to be zero without loss of generality.) The shear rate § at
the radius r is
g (2.3)
c+rtanf’

where £ denotes the angular velocity of the cone.

(b) The configuration withc = 0

When the tip of the cone just touches the plate, so that ¢ = 0, we see from (2.3) that the shear
rate is independent of the radius. Accordingly the normal-stress difference p,, — pgg is also inde-
pendent of the radius, so that 0p,,/0r = 0ps3/0r, whence (2.1) may be written in the form

rOpgeOr = P+ 2P, (¢ = 0). (2.4)

In (2.4) we have introduced the symbols P, for the primary normal-stress difference p,; — p,5, and
P, for the secondary normal-stress difference p,yy— ps3. Since P, and P, are functions only of the
shear rate (2.4) implies that the normal stress p,,, acting on the plate, varies logarithmically with
the radius. Moreover, since P, is independent of the radius, it follows from the boundary condition

(2.2) that pua(R) = P (2.5)

Then using the condition (2.5), and integrating p,, over the area of the plate, we find that, as a
result of the shear flow of the liquid, the total normal force F acting’on the plate is

F = imR?P,. (2.6)

(All the cones used in the current experiments had been truncated at their vertices. Typically this
would mean the loss, at the tip, of a conical section of about 0.1 mm height. The truncation
obviously affects the velocity distribution within the fluid and accordingly the estimate of .
From the actual measurements we find that the variation of p,,(r) is very nearly a logarithmic
function of the radius (over most of the area of the plate) as suggested by (2.4). But, because of the
truncation, py, must necessarily be finite at » = 0, since the shear rate now tends to zero as we
approach the centre. Thus, to estimate the error introduced by the truncation we assume that
b4 has the following distribution:

pee = constant (0

<
b =a+blnr (a<r

;)’} (2.7)

where a and 5 may be related to P, and P, by means of (2.5) and (2.4), if we further assume that
the truncation does not influence the values of ¢ and 4. This assumption seems to be justified by
the results of § 6.

The experimental results suggest that, if we choose o to be equal to the radius of the ‘flat’ on
the cone, (2.7) will probably lead to a conservative estimate of the error in the total force measure-
ment. To find the thrust F acting on the plate, p,, is integrated over the area of the plate and

we find that F—F “)2(1 2P, ve
=) (4 7) (2:8)

where Fj is the force acting when o = 0. In the present set of experiments it appears that P, < P,
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and hence the error in the estimate of F; is nearly equal to (a/R)2. For the values of & used in the
course of the measurements, the quantity («/R)? is always less than 0.002, and the actual error is
probably much smaller. This source of error results in a low estimate of P,.)

Since the material functions are independent of the radius in the cone-and-plate viscometer,
it follows immediately that the torque 7" required to rotate the cone is

T = 3Ry (5). (2.9)

(¢) The general configuration

We now consider the more general situation depicted in figure 1 in which ¢ is not restricted as
above. In this case the normal force F acting on the annular section of the plate between the radii
Riand R may be derived easily from (2.1) and is given by (cf. Marsh & Pearson 1968)

, B tan #
I e — 2 __ P2 [ A B
F Trle{zrg (= RY) [Hﬂanﬁ 42 (B, i—P)]}dr. (2.10)
If we now differentiate (2.10) with respect to ¢, and set ¢ equal to zero we find that
tanf [OF o, B .dB R R; dP .
o (62)0;0 - — (.l——E)s 5 —PZ(L - R) +25 8= (2.11)

For the special case in which R; = 0, (2.11) becomes

_tanp (E)F) dP1
=0

= \% S35 = B(s), (2.12)

a result which was first derived by Jackson & Kaye (1966). Thus if 7,(s) is known we are able to
estimate Fy(s) from (2.12) by measuring (0F/0c),_o. An approximate estimate of £,(5) may also be
found from (2.11), for small values of Ri/R, by neglecting the term 2(R;/R) (dP,/dIn5); a better
estimate of £, could then be obtained by using the first approximation to give an estimate of this
neglected term.

A similar expression to that of (2.12) may be derived for any value of ¢. To do this we put B, = 0
in (2.10) and change the variable of integration to § by means of (2.3). Carrying this out we
find that

KB SQ(P, — F,) — 2 tan BB, |,
2\ 1 2 2 5 b
F[(m8c?) —fo 0 —Ftan B ds. (2.13)
Now, on differentiating (2.13) with respect to ¢ we obtain
. Rt
) = (142228 [ emy B o-om), (214

where m = —0In F/0In¢. This result was first given by Marsh & Pearson (1968) and, if P, is
known, it provides another means of measuring F,(s).

2.2. Torsional flow between parallel plates

This viscometer has the same arrangement as that shown in figure 1 when the cone angle 4 is
zero. Accordingly the comments made in § 2.1 (a) are applicable here, but it should be noted that,
in the slow-flow approximation, the equations of motion are satisfied identically (with the
exception that the boundary conditions at the liquid/air interface may not be satisfied).

Whentan # = 0 wesee from (2.3) that$9/ds = r0/0r, and hence from (2.1) the radial distribution

of the normal stress p,, is given by

P,
p” =P+ P+ s(il (2.15)
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If we now integrate (2.15) we find that
§

Pl =) = BS) + [ (B + P®) €1k (2.16)

The total normal force acting on the plates may be found from (2.13) by putting tan # = 0, and
with the aid of (2.3) is given by

wR2 (@)
o _TRE N DY e 217
e R GIORV IO (2.17)
On differentiating (2.17) with respect to s (R) we deduce the result of Kotaka, Kurata & Tamura
(1959): :
. 2F $(R) OF .
RR) - o~ gz = POR). (2.18)

Thus, knowing P, (§), we may determine F,(s) from measurements of F(5(R)).

2.3. Flow between concentric cylinders

In this viscometer a Couette flow is generated between a pair of concentric cylinders by rotating
one of the cylinders with a steady angular velocity 2, keeping the other cylinder fixed. The paths
ofindividual fluid elements are assumed to be circular and to be concentric with the two cylinders,
as a result of which both the equations of motion and the boundary conditions are satisfied exactly
for the case of extremely long cylinders. However, in the laboratory there will be regions near the
(axial) extremities of the fluid where these conditions are not satisfied, thereby giving rise to
secondary flows, the importance of which must be investigated experimentally.

By considering the stress distribution on a small element of fluid, between adjacent streamlines
of the flow, it is easily shown (cf. Lodge 1964, pp. 190-192) that, for equilibrium in the radial
direction, we must have rOpys/Or = P(5), (2.19)

where 7 is the radius of curvature of the streamline under consideration. From the stress distribu-
tion in the tangential direction we see that

70poy[Or = — 25y (5). (2.20)
The local shear rate is determined by the angular velocity distribution w(r) and is (see Lodge
1964, pp. 344-346) § = rdw/dr. (2.21)

Then by integrating (2.19) across the gap between the cylinders it follows from these results that

1[o
Apgy =5 f RAGELS (2.22)
ogi—

where Ap,, is the difference between p,, acting at the outer and inner cylinders respectively;
o denotes In | p,; |, and has the value o7 at the inner cylinder. From (2.20) we see that the value of
o at the outer cylinder may be expressed in terms of o; and the ratio « of the radii of the inner
and outer cylinders; for convenience we write § = —2Ink(= 21n (R,/R))).

For a given fluid the velocity distribution 7w (r) is determined by the angular velocity 2 of the
moving cylinder. When the inner cylinder rotates it follows from (2.20) and (2.21) that

1(o
Q=3 f RIGL (2.23)

T Inderiving (2.19) it is assumed that no body forces act within the fluid. However, in practice, the centrifugal

force field gives rise to an additional, unwanted, gradient of p,, which must be subtracted from the measurements.
But this correction is easily accounted for; it is discussed further in § 3.

39 Vol. 250, A


http://rsta.royalsocietypublishing.org/

/|
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

516 W.G.PRITGHARD

Thus if the material function p,, (§) is known we are able to determine o and hence the shear rates
at the inner and outer cylinder walls for a given value of 2. We note that (2.23) depends upon the
material function py(5) and so, for a given speed of rotation, the velocity distribution differs
according to the material: Pipkin (1968) has chosen to call flows of this kind partially control-
lable’ to distinguish them from flows of the kind discussed in §§ 2.1 and 2.2 in which the shear
rate at a given fluid element is independent of the material properties.

We are now in a position to determine P, (o) from the relations (2.22) and (2.23) by making
measurements of Ap,, and 2 (and knowing p,,(5)). To invert (2.22) to find P, (o;) we follow the
method suggested by Coleman ¢t al. (1966): from (2.22) we have

P(01) = P(0i—8) = 2 (9%:122—))0_, (2.24)

and by determining empirically the quantity 0(Ap,,) /00 at ¢ = o;j—nd (n = 0,1,2,...) we find,
on summing terms, that o /(A
Plo) =23 (-%ﬂzﬁ) . (2.25)
n=0 o oj—nod
When theratio, «, of the cylinder radii is not too near one the series (2.25) converges fairly rapidly,
and in the current measurements only three or four terms of the summation were required.

2.4. Stress-optical methods

In order to provide as many independent checks as possible we have used stress-optical
measurements to give an additional estimate of ;. These methods have been used fairly widely
and with remarkable success (a recent survey article by Janeschitz-Kriegl (1969) discusses many
of the results). In particular Kaye ef al. (1968) found extremely good agreement between their
stress-optical measurements on the one hand and their mechanical measurements on the other.

In general a molecule becomes polarized in the presence of light, so that an aggregation of
molecules, forming say a liquid or a gaseous phase, may exhibit optical-birefringence properties.
In solutions of long-chain polymer molecules this effect is pronounced and the birefringence may
readily be measured: for such solutions (at a given temperature) we shall assume that the
refractive-index tensor 1 may be related to the stress tensor p thus:

n=Cp+41, (2.26)

where C and 4 are scalar quantities. Although (2.26) is taken as an assumption, this kind of
relation is not unexpected on the basis of molecular theories: for a permanent network of long-
chain molecules a relation of the form (2.26) has been derived (see Lodge 1960) when the
configuration of states of equal potential energy is a Gaussian distribution, an approximation that
is expected to be valid for extremely long polymer chains. Lodge (1960) suggests how the theory
may be relaxed to apply to a liquid for which no permanent network exists, but for which a tem-
porary network may be defined such that a molecule passes through almost all its configurational
states before the network undergoes a change. The theory accordingly predicts that the stress-
optical coeflicient C is independent of the rate of shear, of the concentration of the solution, and
of the distribution of molecular weights of the molecules.

For a shear flow (v!(x2%), 0, 0) it is usual to make optical measurements of Az, the difference
between the principal refractive indices of 7 in the 1-2 plane, and of y’, the inclination of the
principal direction in the 1-2 plane to the 1-direction. If Ap and y denote the corresponding
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quantities for the stress tensor p, it follows from (2.26) that

An = CAp } (2.27)

and X =X

But from the well-known relations describing the principal axes of the stress tensor (see, for
example, Lodge 1964, p. 66) it follows from (2.27) that

(Ansin 2y')[2py, = C, (2.284)
and 2py cot 2y’ = P,. (2.285)

Thus, by measuring Az, ¥" and p,, we are able to estimate / and to run an independent check on
the constancy of the stress-optical coefficient C. Very impressive experimental verification of
(2.284) has been demonstrated by a number of workers (see Janeschitz-Kriegl 1969): for example
Philippoff (1964) finds a constant value for C, in a set of measurements, at values of the shear rate
covering a range of more than three decades.

Thus, although the predictions of the stress-optical theory are not known to be corollaries of
the simple-fluid assumptions, the method itself is of undoubted value as an experimental aid.
We shall use it to provide an additional independent check on the estimate of the primary normal-
stress difference, P,.

3. EXPERIMENTAL APPARATUS

All pieces of apparatus used in this project have hitherto been described in detail in the
literature, or are commercially produced machines, and thus we shall discuss here only the salient
features of each machine. A summary of the measurements made on each piece of apparatus is
givenin table 1 at the end of this section. In some cases the same kind of measurements have been
made on more than one machine in an attempt to compare the reliability of each instrument.
Thus, briefly, the following instruments were used:

(I) The apparatus of Adams & Jackson (1967) for the measurement of torques and normal
forces. This apparatus consists of a rotating upper member and a lower plate suspended from
three fine wires. The suspension is arranged so that forces normal to the plate are converted to an
angular displacement of the plate and hence may be balanced by an externally applied torque;
dependent upon the sense of rotation, this ‘effective torque’ either adds to, or subtracts from, the
torque arising from the shear stresses in the liquid. In operating the machine a carefully adjusted
external torque is applied to the lower plate so that no net displacement of the plate occurs. By
measuring this torque, for both senses of rotation of the upper member, we can deduce the normal
thrust and the torque acting on the plate. This null-displacement technique ensures that there
is no change in the separation between the two platens as a result of the forces acting within the
liquid.

The free surface of the liquid at the edge of the apparatus was of the form indicated in figure 14.
Thus it is important that the shape of the free surface does not change by a significant amount
when the platen is rotated, or else the surface-tension forces may lead to significant errors. From
visual observations of the free surface this assumption seems to be well borne out at low shear
rates. At the higher shear rates, however, changes in the shape of the free surface were noticeable,
but the changes were such that the resulting error was expected to be very small in relation to the
forces being measured. On the other hand, the presence of the free surface necessarily gives rise
to secondary flows in the liquid, as suggested in §2.1, and the effects of these are not easily

39-2
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determined with the present machine. But there is some evidence that the influence of these
secondary flowsis small, since from the measurements of the normal force between parallel plates,
it is observed (see § 9.3 below) that the measured force is independent of the gap between the
plates and depends only on the shear rate at the rim, asindicated by (2.17): when the gap between
the plates is changed the angular velocity of the rotating member must be altered to maintain
the same rate of shear at the rim, and this presumably would affect the nature of the secondary
flows, yet no significant changes in the thrust were observed.

There are other possible sources of error in these measurements, and these are discussed below in
connexion with apparatus I'V.

The main dimensions of the apparatus are: the platen radius, R = 4.98cm; the cone angle
B = 3.10°.

(II) A Weissenberg rheogoniometer (model R 16) at Madison. This machine is used to make
basically the same measurements as the previous machine, though the actual method of measure-
ment is a little different. The torque is determined from the (small) twist of a torsion rod; the
normal forces are found from the (small) deflexion of a leaf spring on which rests one of the
platens. The spring is rigidly clamped at one end and at the other rests on a support: the support
is raised by a servo system, according to the deflexion of the spring, so that the gap between the
platens is held constant. The liquid boundary at the rim is of the same form as that used in
apparatus I (and sketched in figure 14). Hence the remarks made about I, regarding possible
errors in estimates of P, made on the basis of the normal-thrust measurements, apply to this
apparatus as well.

The platens used with this machine had radii of 3.75 cm; the cone angle was 1.00°.

All measurements with this instrument were made by Dr E. K. Harris, Jr. of the Chemical
Engineering Department at Madison.

(III) A Weissenberg rheogoniometer (model R16) at Manchester. The comments about
apparatus IT apply also to this machine. The measurements in this case were made by a laboratory
technician.

The platens used for these measurements had radii of 5.00 cm; the cone angle £ was 1.08°.

(IV) The apparatus of Adams & Lodge (1964) for measuring the normal-stress distribution.
This machine consists of a rotating upper member and a lower plate in the form of a tray. Drilled
into the lower plate are three small (0.122 mm diam.) holes leading to a large cavity at the bottom
of which is a thin metal diaphragm (the arrangement is illustrated schematically in figure A1l
of the appendix). When the working fluid fills the cavity the diaphragm may be used as a pressure
transducer by applying a static pressure to the side opposite the working fluid so that there is no
net displacement of the diaphragm. The value of the applied static pressure is then used to
estimate the normal stress acting on the surface of the plate near the hole. The lower plate may be
moved in a direction normal to the axis of rotation with the result that measurements may be
made at any desired radius. The free surface of the liquid may take either of the configurations
sketched in figure 1.

A large number of potentially important sources of error have had to be considered in the
design of this apparatus: for example, too large a misalinement of the axis of the rotating member
with the normal to the stationary plate may give rise to non-negligible errors (see Adams & Lodge
1964). Another source of error discussed by Adams & Lodge arises from the axial movement of
the rotating member: because of the high viscosities of the fluids usually employed, Adams &
Lodge advise that the axial displacement of this member should be less than about 0.05 um to
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reduce the error to negligible proportions. Similar considerations were taken into account in the
design of apparatus I.

The following platens were used with this machine: cones of radii 4.41cm and f-angles of
5.67°, 8.266°, 1.718°; a cone of radius 6.03 cm and f-angle 3.267°; a flat plate of radius 4.41 cm.

(V) The flow-birefringence apparatus of Kaye & Saunders (1964). This instrument consists
of a pair of concentric cylinders, the outer of which may be rotated at a steady speed about the
common axis. The difference in radii between the two cylinders is much less than the individual
cylinder radii so that the rate of shear is nearly uniform across the annular gap containing the
working fluid. The shear stress in the liquid may be determined by measuring the torque exerted
on the inner cylinder. The optical birefringence and extinction angle may be determined by
shining a narrow beam of plane-polarized light parallel to the common axis of the cylinders and
through the liquid gap: the extinction positions and total phase retardation are observed for the
emergent, elliptically polarized, light.

The radius of the inner cylinder is 6.75 cm and the width of the annular gap is 0.193 cm. The
path length of the light beam through the test liquid is about 22 cm.

All measurements with this apparatus were made by Dr A. Kaye.

(VI) The concentric cylinders of Broadbent & Lodge (1971) in which the normal stress pyo,
acting on the cylinder walls, may be measured. The machine consists of a pair of concentric
cylinders of which the inner cylinder is rotated at a steady speed. The normal stresses acting on the
walls of the inner and outer cylinders are measured by means of transducers of the kind used with
apparatus IV (and see appendix A). The radii of the inner and outer cylinders could be changed
by the insertion of cylindrical sleeves. The following sizes were available:

inner cylinder radii, R; = 6.480cm; 8.303cm;

outer cylinder radii, R, = 9.771cm; 11.862cm.
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Ficure 2. A schematic drawing of the concentric cylinders of Broadbent & Lodge (1971).
T denotes the stress-measuring transducers.

The disposition of the cylinders is shown schematically in figure 2. To obtain meaningful data
from this apparatus there must be extensive regions above and below the measuring transducers
where the velocity field closely approximates to that hypothesized in § 2.3 (namely that all fluid
particles move in circles concentric with the cylinders). Deviations from this flow necessarily
arise at the upper and lower boundaries of the apparatus: the upper surface of the liquid is free
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and should not be an important source of generation of secondary flows (but large distortions of
the free surface, because of the Weissenberg effect, may negate this assertion); the lower end of
the cylinder is some distance from the bottom of the container (see figure 2) to help reduce the
effect of secondary flows generated at the lower fixed boundary. Broadbent & Lodge have
indirectly investigated the influence of these effects by making a series of measurements in which
the depth of the liquid and the position of the measuring transducer, relative to both the upper
and lower boundaries, was varied. From their measurements Broadbent & Lodge suggest that
the secondary flows are of negligible importance. We shall make the same assumption with
regard to the current measurements.

The largest value of the Reynolds number R; £22/v for these experiments, was about 1.3. vis the
kinematic viscosity.

There is also the possibility that the flow deviates from the postulated motion as a result of the
Taylor instability of Couette flow. For viscous Newtonian fluids the critical operating conditions
beyond which the instability is manifested have been carefully investigated both theoretically and
experimentally (see Chandrasekhar 1961). Thus when the inner cylinder rotates and the outer
cylinder is held fixed, the instability occurs when the Taylor number 7a(= $:(2R?/v)?) exceeds
3.31 x 104, for the case in which R;i/R, = 0.5. However, the circumferential velocity distribution,
for a fluid whose viscosity depends upon the shear rate, differs greatly from that of a Newtonian
fluid and hence it is to be expected that the critical Taylor numbers also differ by a wide margin.
Because of the far larger radial gradient of the circulation usually encountered near the inner
cylinder in the non-Newtonian case, it is expected that the critical Taylor number will be con-
siderably less than that for Newtonian fluids. Thomas & Walters (19644, b) have shown that the
presence of elasticity in the fluid can considerably lower the value of the critical Taylor number at
which instability occurs. In the present experiments we are unable to say that instability did not
occur and if it did we must assume that it had negligible influence on the results. Two pieces of
evidence support this: first, the largest Taylor number occurring in the experiments (based on
the smallest observed value of v, and on the largest £2 employed) was about 10, and usually it was
much smaller than this; thus any secondary flows are likely to have been weak. Secondly, there
were no observed fluctuations or anomalous results noticed during the course of the experiment.

When we interpret the results of measurements taken with this apparatus corrections must be
made for unwanted stresses arising from centrifugal forces in the fluid. The fluid in the cavity of
the inner cylinder rotates essentially as a rigid body and thus contributes to the stress acting on the
transducer diaphragm at the bottom of the cavity. Since the axis of rotation passes through the
centre of the diaphragm, it follows that the magnitude of this correction (pu) is §pR? 2% where p is
the density of the liquid. Also, a correction must be applied for the contribution to the stresses
arising from the centrifugal forces of the rotating liquid in the annular gap (see Coleman et al.
1966). This correction has a magnitude pc, where

pe = f:opm)(r)zdr. (3.1)

o(r) is the angular velocity of the fluid at the radius 7, and is given by an integral of the form
(2.23). Integral (2.23) is dependent upon the material function p,,(s) and therefore it must, in
general, be evaluated graphically. However, it appears that the function

i =y, (3.2)

where .7, % are constants, is a good approximation to the experimental data (cf. § 8.3). Thus the
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use of (3.2) to evaluate (3.1) should yield a good approximation to pe. Using the relation (3.2) and
an integral of the form (2.23) we find, in the case of a stationary outer cylinder, that

__‘_Y_zK_Z? R() 29 Q9
w = 5Y7; {(7 —1 , (3.0)

where §; is the shear rate at the inner cylinder. It now follows from (3.1) that

K4P--2 (1 KB ] 22 | Kz)

e 232 — S 3.
b= PR\ s T e (8.4)

The correction for a Newtonian fluid is found by putting 4 = 0 in this expression. But for
Newtonian fluids £, = 0, and hence, from (2.22), it follows that non-zero measurements of Apy,
arise entirely from these centrifugal contributions. Broadbent & Lodge (1971) have made a careful
check of this result, and their measurements are in good agreement with the prediction; moreover,
their measurements of the stresses acting on the individual walls of the cylinders also accord
extremely well with the theorctical values for a Newtonian fluid.

In the present experiments # ~ 2.7 and it happens that the total correction py + p, is nearly the
same as that for the Newtonian fluid, but we shall use (3.4) to calculate pe.

In table 1 a summary is given of the measurements made on each instrument and the quantities
which may be deduced from these measurements.

TABLE 1. SUMMARY OF THE EXPERIMENTAL MEASUREMENTS AND OF THE DERIVED QUANTITIES
The code for the instruments is: (I) Adams & Jackson (1967); (II) Weissenberg, rheogoniometer at
Madison; (II1) Weissenberg rheogoniometer at Manchester; (IV) Adams & Lodge (1964); (V) Kaye &
Saunders (1964); (VI) Broadbent & Lodge (1971).

instrument reference
viscometer used measured quantity derived quantity equation
cone and plate LILIII mnormal force I P, (2.6)
(¢ =0) LILIII torque T oy (2.9)
v normal stress distribution r 0p,,/0r P20, (2.4)
v normal stress at the rim p,,(R) P, (2.5)
cone and plate 1,11 normal force F(c) p, (2.12), (2.14)
(general values v normal stress p,, integrated over an Pt O dr,
of ¢) annulus of the plate to give F(c) 2t dins (2.11)
plate and plate 1,11 normal force F(s) p, (2.18)
v normal-stress distribution
dP,
(a) rOpyyfor Pyt Pyt —2 (2.15)
dlns
s
(B) p22(8) — P22 (0) Pyt J:) (Py+ Py) £71dE (2.16)
concentric cylinders V torque P
A\ birefringence extinction angle y’ P, (2.28)
VI normal stress on the cylinder walls Ap,, P; (2.22), (2.25)

4. PREPARATION AND STABILITY OF THE LIQUID
4.1. Preparation

The liquid used for the experiments was a solution of a high molecular mass polyisobutene,
‘oppanol B200° (M, = 4.5x10%, M, /M, = 2.0), in a low molecular mass polyisobutene,
‘oppanol B1’ (M,, = 400; viscosity at 25 °C = 0.25 P). A quantity of the B200, weighing 150 g,
together with 61 of hexane was placed in a 201 flask which was then rotated slowly about an axis
inclined to the vertical. After 13 days of mixing the solution appeared, to the eye, to be homo-
geneous and a quantity of the liquid polymer B1 was added to the flask. The flask was now
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rotated for a further 23 days, by which time the solution again appeared to be homogeneous.

The hexane was then removed by means of a vacuum pump with a stream of nitrogen passing

through the solution to aid nucleation. The pumping was continued for a total period of 58 h,

the last 10 of which yielded negligible quantities of hexane. The solution was then decanted to

smaller containers, sealed, and stored at 4 °C. The components of the solution were added in the

proportion of 3.05 g of B200 per 100g of B1 (or in equivalent terms 24.8 g of B200 per litre of B1).
A small part of the solution (kept at 4 °C) was flown to Madison to be tested there.

4.2. Stability

A technique to characterize the stability of the physical properties of a solution, as a function
of time, has been suggested by Lipson & Lodge (1968). This characterization uses the extremely
accurate measurements of the quantity 7 (0p,,/0r) obtainable with apparatus I'V: for the cone-
and-plate apparatus this quantity is a constant and the experimental results show that p,, varies
logarithmically with the radius to within a standard deviation of about 0.5 %, of 7 (0,,/0r). Thus
Lipson & Lodge (1968) suggest that their polyisobutene solution retained, at 25 °C, the same
physical properties for a period of about 8 days, after which the liquid properties began to change,
probably as a result of chemical oxidation of the long-chain molecules. Using the same test
Pritchard (1970) found that a similar polyisobutene solution exhibits no measurable changes over
a period of at least 140 days, if it is kept in a sealed flask at a temperature of 4 °C. Following a
similar procedure with the present solution it has been found that the physical properties are
preserved for at least 9 months. However, when the liquid is removed from storage and placed
in one of the measuring instruments, at room temperature, it is essential to know the period of
time during which reliable data may be taken. Accordingly, apparatus IV was filled with the
solution and the gradient r(0p,,/0r) measured at various times over a period of 51 days. (Actually
we shall denote the quantity determined in the measurement by r(0p/0r), where p represents the
mean value of the pressure observed (cf. appendix A) in the clockwise and anticlockwise
directions.)

This experiment was carried out with a ‘sea of liquid’ surrounding the cone (as shown in
figure 10) so that the plate could be moved in a direction normal to the axis: only two positions
of the plate are needed to yield six measurements of 5(r) which is usually sufficient information to
define 7 (0p/0r) fairly accurately. The values of r(0p/0r) determined in this way are indicated by
the open circles in figure 3. After a certain time the value of 7(0p/0r) deviates from that measured
in the early stages of the experiment; also the standard deviation of each result increases with the
day number of the experiment. From the distribution p(Inr) obtained at each measurement it
appears that the increased variance arises from the two determinations of p nearest the rim of the
cone, and lying within a radial distance from the rim of about the same magnitude as the lateral
movement of the plate. Thus it appears that the liquid in the ‘sea’ beyond the rim of the cone is
oxidized at a rate different from that near the axis of the cone, with the result that the solution is
probably no longer homogeneous. On the other hand, the four measurements of p nearest the
axis of the cone may be used to define r (0p/0r) over a region in which the fluid appears to be more
homogeneous. The result of recalculating r(0p/0r) in this way is also shown in figure 3 (filled
circles): in this case the magnitude of 7(0p/0r) decreases with time, except for the initial period of
10 to 12 days, but its standard deviation is nearly the same at each determination.

1 All measurements in this paper were made at 25.0 °C.
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Since r(0p,,/0r), and hence the related quantity r(0p/0r), is a measure of P, + 2F, (see (2.4)), it
would appear from these results that the physical properties of the solution change with time,
probably because of degradation of the polymer molecules. However, the results suggest that
fairly reliable data may be taken for a period of up to 10 days before the physical properties
undergo significant changes.

A similar test was also carried out for degradation under prolonged shearing, and, after a total
of 30h shearing of the liquid, no significant changes in the material properties were observed.

1250
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Ficure 3. A test of the constancy of the physical properties of the liquid as a function of time. The test was made
in apparatus IV at 25 °C; the shear rate § = 1.74571; the cone angle £ = 3.27°. The quantity plotted is —rdp/dr:
o, from all the data; e, only the data near the axis of rotation. (1dyn = 10-5N.)

5. MEASUREMENTS OF THE SHEAR-STRESS FUNGTION

The shear-stress function p,, was measured, following the methods outlined above, on instru-
ments I, IT, IIT and V. The measurements of p,; ($) obtained from instruments I and V are shown
in figure 4. As a rough guide, it is anticipated that these measurements will be accurate to within
about 2 to 3 9%, in the case of the concentric cylinders (apparatus V), and to within about 5 %, with
the cone-and-plate viscometer of Adams & Jackson (apparatus I). It follows from the graph that
all the measurements of p,, lie well within a 5 9;-band (indicated by the bar on the curve) of the
approximate ‘curve of best fit’. (In drawing this curve slightly more weight has been given to the
measurements from apparatus V.) Thus, we shall assume henceforth that the curve of figure 4
represents the shear-stress function over the range of shear rates covered by the measurements.
Also shown in figure 4 is the viscosity 7, defined by the relation 9 = p,,/s, which is seen to change
by an order of magnitude over the range of shear rates covered by the measurements.

Some molecular theories (see, for example, Zimm 1956) predict, for sufficiently low shear rates,
that the viscosity is independent of the shear rate. Indeed a theorem of Coleman & Noll (1960)
shows that all simple fluids behave as second-order fluids, at sufficiently low shear rates, and have
a viscosity that is essentially constant. Accordingly, the abscissa of figure 4 has also been scaled in
terms of a dimensionless shear stress p,; = p,,/nk T, suggested by these molecular theories (cf.
Janeschitz-Kriegl 1969), where 7 is the number of long chain molecules per unit volume, £ is
Boltzmann’s constant, and 77 is the absolute temperature. We expect that the second-order-fluid
approximation is realized only for values of f,; <€ 1; these conditions were not attained in the
present experiments.

40 Vol 270. A,
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The measurements of p,,(§) made with instruments II and III are shown in figure 5 and the
results are compared with the curve of figure 4. Since Harris (1970) suggests that apparatus 11
cannot be expected to be reliable to within + 5 %, the results of figure 5 may be deemed to agree,
to within the measuring error, with the measurements shown in figure 4.

dimensionless shear stress, fiy,

1020 3 40 50
8007 T I T

»
,/g/ Dy /dyn cm2

400} g

|/
( 7/P
| |

|
0 10 20
shear rate, /st

Figure 4. The shear-stress function py,(s). o, Cone-and-plate measurements made with apparatus I, f = 3.27°%;

e, measurements from concentric cylinders, apparatus V. , Approximate mean representation of the
data. (1P = 101 Pas.)

800~
q
g
o 400+
>~
g
< 4
4 ’
®
| | | |
0 10 20

$fs~1
T1GURE 5. A comparison of the shear-stress function of figure 4 with other measurements: e, cone and plate
(apparatus IT) at Madison, # = 1.00°; o, cone and plate (apparatus III) at Manchester, 5 = 1.08°.
Thus, consistent measurements of the shear-stress function have been obtained from four
instruments, each differing from the others in some feature. So it would appear, as far as the shear
stress is concerned, that the possible sources of error mentioned above are of negligible importance
in these experiments.
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6. THE PRIMARY NORMAL-STRESS DIFFERENCE

Using the three methods for measuring the primary normal-stress difference indicated in
table 1, P, has been measured on a total of five instruments. The results of the measurements made
at Manchester with instruments I, V and VI are shown in figure 6; but, alas, no two of the sets
of data are in agreement over the entire range of the measurements. However, for shear rates
below 651 the results from the cone-and-plate apparatus (I) and the optical measurements,

120001~

A

5%~

8000

T

P,/dyncm—2
I
i

(4
4000 v/ o
5% ~»
a
]
(4
a
[ o | ]
o "
a
&
o u
foo s
m % i 40 _®
[ | 1 1
0 10 20

upper scale, dimensionless shear stress, fy,
lower scale, shear rate, §/s~1

Ficure 6. The normal-stress difference P,(s). e, Cone-and-plate measurement with apparatus I, f = 3.27°.
A, Stress-optical measurement, apparatus V. a, stress-optical results after correction (see text). o, concentric
cylinders, apparatus VI, k = 0.577. =, concentric cylinders, apparatus VI, k = 0.700. , Curve assumed to
represent P, (s).

indicated by open circles, are in very good agreement. The results from the concentric cylinders
(apparatus VI) are not in agreement with either of the other two sets of data: indeed the measure-
ments made with cylinders of different radii do not even agree with each other, in contradistinction
to the results of Markovitz (19655) who observed a close agreement between measurements taken
with two different values of « (the ratio of the radii of the inner and outer cylinders). That the
measurements from the concentric cylinders would not agree with the other data was expected
40-2
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because of the use of cavities in the walls of the cylinders to measure the stress p,,. The discussion
in appendix A indicates how this measuring technique may lead to large systematic errors in
determining p,,, and accordingly the disagreement in figure 6 is believed to be a manifestation of
this phenomenon. Moreover, the error in py, is expected to depend upon « and indeed we see in
figure 6 that the results for ¥ = 0.577 and « = 0.700 are different. A discussion of the possible
resolution of this disparity is given in § 8.3.

8 .
L
°
= .
5l
Ay /. R
e
e
;
J
| 1 1 |
0 10 20
$fs1
F1cUurke 7. The ratio of the primary normal-stress difference to the shear stress. , Derived from the representations

assumed in figures 4 and 6; e are derived from optical measurements of the extinction angle y’, apparatus V.

Let us assume, for the present, that the measurements made with the cone-and-plate apparatus
(the filled circles of figure 6) nearly represent the function #;, and accordingly that the curve of
figure 6 is a good approximation to P (5) over the range of the measurements. This function has
been replotted in dimensionless form in figure 7, where P, has been made dimensionless with
respect to the shear stress. From the geometrical properties of the stress ellipsoid it follows that
P,/ps; is a measure of the orientation y of one of the principal axes of the stress ellipsoid to the
1-direction of the flow (cf. (2.285)). But the use of the optical measurements depends on the
assumption that y is equal to the extinction angle x’ (see (2.27)), and for this reason the measure-
ments of ¥’ made on apparatus V are also shown in figure 7. For shear rates less than about 651
the data agree well with the curve derived from figure 6, but the four measurements of ¥’ made at
the higher shear rates deviate from the expected result. It is thought that these four optical
measurements are in error, and that the difficulty is a consequence of the Weissenberg effect which
causes the free surface of the liquid to rise near the inner cylinder when Couette flow is established
between a pair of concentric cylinders. At the higher shear rates this effect is believed to have been
large enough to expose, at least partially, the upper window through which the light beam passes,
thereby interfering with the beam and introducing a small error to the extinction angle x'. Kaye
etal. (1968), using a less concentrated solution, did not encounter this difficulty and obtained good
agreement between both measurements over the entire range of the experiment.

Fortunately it is possible to make an independent check of the optical measurements by means
of (2.284) since the stress-optical relation (2.26) is valid only if the stress-optical coeflicient C'is
a constant. The value of C determined at each measurement is shown in figure 8, from which
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itis evident that C'is not a constant. On the other hand, C'is constant, to within the experimental
accuracy, at the lower shear rates; it has a mean value, indicated by the dashed line, of
1.66 x 10~19cm?/dyn when the four readings at the higher shear rates are excluded. This value
of C'is in good agreement with the value of 1.68 x 10-1°cm?/dyn obtained by Kaye et al. (1968)
for a 2 9, solution of polyisobutene B 200 in polyisobutene B 1, and by Mr D. M. Bancroft (private
communication, and see Kaye ¢t al. 1968) for solutions of various concentrations of polyisobutene
in decalin. As indicated in § 2.4 the theory suggests that Cis independent of the rate of shear and
of the concentration of the solution, and accordingly the very close agreement between all these
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9 Z Ficure 8. The stress-optical coefficient C measured on apparatus V. ————, Mean value of the
T § measurements made at the lower shear rates.
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B = (apparatus II) at Madison, f = 1.00°; e, cone and plate (apparatus IIT) at Manchester, £ = 1.08°,
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measurements of C provides a good basis for adopting, in the present measurements, the value of
the stress-optical coefficient given by the results at the lower shear rates. Thus, if we assume that
C = 1.66 x 10-1°cm?/dyn, and since we know the values of An and p,, at each measurement, we
may recalculate y’ via (2.28).1 Following this procedure we may deduce new ‘optical’ estimates
of P, the results of which are indicated by the dark triangles of figure 6. The agreement of these
new estimates of  with the data from the cone-and-plate apparatus is extremely close, indeed so
close that we feel justified in taking the curve of figure 6 to be a good approximation to P(s).

The results of the two measurements of P, made on the Weissenberg rheogoniometers at
Madison and at Manchester are shown in figure 9 where they are compared with the curve
representing the data of figure 6. The measurements from the instrument at Manchester are, in
the main, in good agreement with the curve; no point deviates from the curve by more than 5 9,
which, according to Harris (1970), is probably well within the accuracy of the machine. By com-
parison, the instrument at Madison gave readings which were in somewhat poorer agreement
with the expected results: one point deviates by 17 %, from the curve, though all but three of the
measurements lie within 10 %, of the curve. These discrepancies are rather disquieting, especially
since we are unable to account for them. Nevertheless, in view of the very good agreement
achieved between the other three instruments, we shall retain the assumption that the curve of
figure 6 is a close approximation to P, (s).

7. THE NORMAL-STRESS DISTRIBUTION fy(r)

In this section the discussion is to be restricted to the measurements of the normal stress p,,(r)
in the cone-and-plate apparatus with ¢ = 0. Under these conditions the quantity 7(0p,,/0r) is a
constant, with the result that p,, is expected to vary logarithmically with the radius. The measure-
ments of the distribution p,,(r) were made in apparatus IV, so that the results are liable to a
systematic error arising from the use of cavities in the walls of the viscometer to determine py,
(see appendix A). This error is to be denoted by pg.

For very deep and symmetrical cavities we shall make the assumption that the measuring
error py is a function only of §, the shear rate the undisturbed fluid would have at the surface of the
viscometer and at the position of the cavity, were it nonexistent. Under this assumption it is
evident that the observed stress p1 is related to the normal stress at the wall of the viscometer by

the equation§ — oy = P+ pu($). (7.1)

In general, (7.1) cannot be justified on theoretical grounds, and accordingly we shall have to rely
on a posteriori arguments based on the experimental evidence to give credence to its validity.
However, that such a relation should hold is not unexpected on the basis of a number of careful
experimental observations (see Greensmith & Rivlin 1953; Kaye ef al. 1968; Tanner & Pipkin
1969; Pritchard 1970) all of which suggest that py; for very deep, symmetric, cavities and slow

1 The measurement of Az is based on the assumption that the extinction angle ¥’ has been determined correctly;
an error in ¥’ will in turn introduce an error to An. However, the refractive index n passes through extremal values
at the angles ¥” and (90°+ y’) and so the measurement of Az is not very sensitive to small errors in y’. The error in
the path length of the birefringent medium through which the light beam passes is assumed to be small: an error of
0.5 cm, which we believe would be unusual for this apparatus, introduces an error of only 2 9.

1 7 is the mean value of the equalizing pressures p_, (see appendix A) observed in both senses of rotation of the
cone. .

§ By virtue of the definition of the coordinate system the normal stress exerted on the wall is equal to (-~ py),
thereby introducing the negative sign in (7.1).
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flows, is independent of the shape of the cavity and is determined only by the local shear rate s.
The present measurements (see also § 8.3) support this contention.

In the cone-and-plate viscometer the shear rate s is independent of the radius and it follows
from the assumption (7.1) that 0py,/0r = —0p/dr. Thus, by virtue of (2.4), the experimentally
determined quantity r(0p/or) should specify the function P, + 2F,. Now the measurements, of
which examples are given in figure 10,1 indicate that p varies logarithmically with the radius to
a very high accuracy as suggested theoretically: typically, for six values of p(r), the quantity
r(0p[or) is specified to within a standard deviation of about 0.5 9, of its magnitude, at the lower

) §
C

~~ shear rates, and to within a standard deviation of about 1.0 9%, at the highest shear rate. (The
A g
< . increased variance at the higher shear rates appears to derive from a poorer inherent accuracy in
> determining the large values of p(r).)
OH
=
Ei = 4000r $-10.98 1
E o
v
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p/dyncm—2

Ficure 10. The normal-stress distribution §(r) in a cone-and-plate viscometer. The measurements were made on
apparatus IV with the sea-of-liquid configuration; f = 3.27°.

Measurements of 7(0p/0r) have been made on apparatus IV using three different cone angles
with both the ‘free boundary’ and the ‘sea-of-liquid’ configurations sketched in figure 1. The

Y B \

- results of these measurements are shown in figure 11 where it is seen that the data points deviate
< by a remarkably small amount from the approximate mean curve (which was drawn by eve):
P Y y PP y ey
@) =~ we shall accordingly assume that this curve is a good approximation to the material function
=% E P, +2P,, for the range of shear rates of the measurements.

1 25 g
kO In §2.1 it was pointed out that a number of features could invalidate the cone-and-plate
T o measurements. We shall now describe measurements undertaken to investigate experimentall
— o g P y

some of these potential sources of error. One such source arises because the equations of motion are
only satisfied approximately for viscometric flows between a cone and a plate, the neglected terms
being of O(tan? #) compared with terms of O(1). Therefore, in an attempt to reveal the importance
of the neglected terms, measurements have been made with three different cones.

T Itis an interesting feature of figure 10 that p(r) = 0 at very nearly the same value of 7 for all shear rates. This

phenomenon was first noticed by den Otter (1967) and was also observed by Kaye ¢ al. (1968). It is discussed in
appendix C.
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Theoretically, it is expected for a cone-and-plate viscometer that pyy = (¢ + py) + b Inr, where
a and b are constants for a given shear rate (see (2.7)), so that p = a+bInr. The constant b
represents the normal stress gradientr (0p/0r) and the quantities 2 and b together specify the normal
thrust acting on the plate (to within a constant, of magnitude wR2py). Examples of the values
determined for ¢ and b are shown in figures 12 and 13. In figure 12 the shear rate is 1.74s~! and
we see for each cone that, with regard to b, the differences observed between the sea of liquid and
the free-boundary condition are very small, except possibly for the case of the 5.67° cone. For two
cones with the same angle #( = 3.27°), but with different radii R, the values of b were found to be
virtually indistinguishable. The mean value of  shown in figure 12 was determined by finding the
mean value of 4 for each cone angle and then using the resultant six quantities to compute a mean.

8000~ e
B £9%
T
g
Q
g
= 4000
S
S
~
U
/ |
g | | |

0 5 10 15
sfs~t
Freure 11. The normal-stress gradient r(0p/0r) in cone-and-plate viscometers using apparatus IV. e, § = 1.72°;
0, f=3.27°% s, f = 5.67. , Approximate best fit of the data. The results include measurements made

with a free boundary and with a sea of liquid at the rim of the cone.

When account is taken of the variability of the data at a given cone angle, it would vappear that
any systematic variations of 4 with the cone angle and with the boundary configuration con-
stitute only a small influence at this shear rate; on the other hand, the results do suggest the exist-
ence of small differences between the various cones which we think merit further investigation.
The measurements shown in figure 12 of the quantity a suggest, in the case of the free-boundary
configuration, that the results are nearly compatible and that systematic differences are small.
However, with the sea of liquid, the value of a for the 1.72° cone differs by about 6 %, from the
mean value of the measurements made with the free-boundary configuration and from the other
measurements made with the sea of liquid; moreover, it is lower than the corresponding measure-
ment with the 1.72° cone made with the free-boundary configuration.t This phenomenon was
1 This result was completely unexpected, since it was thought that the presence of the sea of liquid would

effectively lead to an increase in the hydrostatic pressure at the rim of the cone (cf. appendix C), thereby resulting in
increased values of a. .
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observed with the 1.72° cone at all shear rates at which comparisons were made. It was not
observed with the other two cones.

The results of measurements of e and 4 at a higher shear rate are shown in figure 13. The results
are shown only for the free-boundary configuration. It is seen that both  and 4 show consistent
measurements for the 1.72° and 3.27° cones. But, with the 5.67° cone, the values of both ¢ and 5

sea of liquid free boundary condition
1760~ o -
[e]
l& o o |+~*1%
swe8p- - mFm—— e
5 8 0
< = = )
6002, | | [ all bl L]
- 1260 o F o
& o
S -
) s °
,(E 1220 A . ~ 1%
S e ] R
| B o
i °
= 1180} = o
| | | | | | | | | S|
2 4 6 2 4 6

cone angle, f/degree

F16URE 12. The quantities a and b (see § 7 for definition) determined as a function of the cone angle f at § = 1.74s-1.
0, R=4.41cm; o, R=6.03cm. (Note: for R=6.03cm, and with the sea-of-liquid configuration,
a ~ 2100dyn/cm?.)

B 7200 9600p- 2%

et %‘“‘“ +1s.d.

>~ ]
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©Q

T 6800 3 92001~
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| 6600 4 9000~ < |

cone angle, f/degree
Ficure 13. The quantities @ and 4 (see § 7) determined as a function of the cone angle,
with the free-boundary configuration. § = 14.5s71; R = 4.41 cm.

differ appreciably from the other results. At these high shear rates it is thought that such a
difference may arise from the significant changes noticeable at the free boundary between the
static state and the rotating state; the changes were not as evident with the 1.72° and the 3.27°
cones.

Thus, taking these results into account we shall assume that the magnitude of the normal-stress
gradient 7 (0p/dr), at a given shear rate, is represented by the mean value of all the measurements

41 Vol. 270, A.
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at that shear rate (except possibly for the 5.67° cone at the higher shear rates). These factors have
guided us in drawing an approximate curve-of-best-fit in figure 11 which, in view of the above
results, we estimate should be accurate to within + 2 %,. Therefore the curve of figure 11 should
closely represent the material function P, + 2P, (that is, if assumption (7.1) is valid) so that, when
taken in conjunction with the results of § 6, we are able to specify both material functions P, (s) and
By(s).

But to be able to account for some anomalous measurements of P(s) from the concentric
cylinders, and to interpret the results of the present section, a new function py($) has been intro-
duced. We shall now determine this new function and check it with a number of independent
measurements.

8. THE ERROR ARISING FROM THE HOLES
8.1. Determination of pg($)

In determining P;(§) and P,(s) no knowledge of py; was required. The measurement that py
could have affected was that of the normal-stress gradient 7(0p,,/0r) in the cone-and-plate
apparatus, but the influence of py vanished there by virtue of assumption (7.1). However,
measurements of the normal-stress distribution f,,(r) in the plate-and-plate viscometer should,
according to (7.1), be influenced by py since the shear rate is now a function of the radius. To
demonstrate this result, we see from (2.16) that the normal-stress distribution py,(5) —py5(0) is
specified by the known functions P,(s) and P,($), so that a ‘theoretical’ stress distribution may be
compared with the measured distribution p(0) — 5(s). Such a comparison is shown in figure 14
and the disparity between the prediction and observation is evident. Indeed the difference
between these two results is a direct measure of py: it follows from (2.16) and assumption (7.1)
that s

pul§) ~pul0) = (4(0)=p(9) - BG) - [ (BB E1% (5.1
where the relation between § and the radius is determined from (2.3). Now the discussion of the
physical origin of oy (see appendix A) indicates that py; (0) = 0: near the cavity there is no motion
of the fluid and the measurement becomes the determination of a hydrostatic pressure. Thus (8.1)
may be used to evaluate py(s). ]

The measurements of p(0) — p(s) shown in figure 14 indicate a fairly large scatter in the data,
especially at the higher shear rates. It is believed that almost all of this scatter arises from the

1 It was mentioned in the Introduction that this test had previously been carried out by Markovitz (1965 @) who
obtained agreement between the measurements and the prediction. Markovitz, however, determined P, from
measurements using concentric cylinders and his values of P; are influenced by py. Thus for Markovitz’s fluid the
influence of py on both sides of (2.16) must have been nearly the same, thereby giving an illusory agreement.
A repetition of Markovitz’s test, on the present fluid, is given in appendix B.

1 Ifthelowest shear rate at which the functions P; and P, have been measured isa, then the integral of (8.1) can be
evaluated graphically only over the range [a, 5]. Therefore the right-hand side of (8.1) is determined only up to a
constant Gy given by

a
[f@erryera
which we are unable to specify experimentally. A crude estimate of C has been made from the function
$
b0 = [ @irpyrrag
o

by arbitrarily specifying that C; = ¢(2a). C, is thought to be of the order of 50 dyn/cm?. A similar procedure will be
used in other parts of the paper without further comment.


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

MEASUREMENTS OF THE VISCOMETRIC FUNCTIONS 533

8000
br
g
© }—
e
>~
T
— 'T.
§ — = 1000F
o =
=
O 5
LT O
=w
| ! |
0 5 10 15

$[s1

Ficure 14. A demonstration of the existence of the function py. o, Direct measurement of §(0) — 4 (s) for parallel
plates, in apparatus IV with a sea of liquid; (the measurements were made at five values of £2 and for plate
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Ficure 15. The hole measuring error, py(s). o, Determined via (8.1) from measurements of (0) — 5 (s)
by parallel plates. @, Determined via (8.2) from 7(05/0r) in the plate-and-plate apparatus.
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determination of p(0) since a small error in p(0) influences systematically a number of data points.
For example, a small error in setting the measuring hole at 7 = 0 would introduce a large error in
£(0); also the large magnitudes of the stresses encountered at » = 0 were difficult to measure in
these experiments because of hysteresis effects in the transducers. The data of figure 14 have been
taken from measurements made at six different angular velocities of the upper plate and at
different gap widths between the plates. At the lower shear rates the superposition of the data is
quite good, but at the higher shear rates it is less accurate. Yet the deviation of each set of data
from the mean curve suggested no obvious trends, so we feel justified in taking the mean curve
to be a good approximation to p(0) —p(s). The difference between the two curves of figure 14
is shown in figure 15 (curve A). It would be difficult to give a fair estimate of the accuracy of this
measurement of pg.

Also shown in figure 15 is a second, less reliable, determination of pg(s) made from the
plate-and-plate measurements. On integrating (2.15) and using (7.1) it follows for parallel
plates that

$

pul®) = =B - ||+ Ry 4| £ra. (8.2)

Some examples of measurements of p(r) in the plate-and-plate viscometer (apparatus IV) are
given in figure 16 and it is seen that, near the rims of the platens, p is nearly logarithmic in 7.

\
8000\

p/dyncm—2

Ficure 16. Measurements of the stress § (r) in the plate-and-plate viscometer of apparatus 1V,
for various values of §(R). The plate separation ¢ = 0.250cm. R = 4.41 cm.

Thus the quantity 7 (0p/0r) may be found approximately by fitting straight lines to the data points
near the rim; usually only the two outermost points were used. The values of g then determined
via (8.2) are shown in figure 15 (curve B), and considering the inherent unreliability of this
method (namely the use of two experimental points to define a derivative), the similarity of the
two curves is encouraging: the difference of 170dyn/cm? between the two curves at § ~ 10s™!
could easily arise from the determination of 7 (0p/0r). But more weight should be attached in what
follows to curve A than to curve B.
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In figure 17 the ratio py/P, is plotted as a function of the shear rate. The exact theory for slow,
two-dimensional, flows of a second-order fluid and the approximate theory for slow flows of a
second-order fluid past a circular hole (see Higashitani & Pritchard 1971 and appendix A) are
also shown in figure 17. Even though the measurements were made at shear rates well outside the
range of validity of the second-order fluid approximation the theoretical values for py are in good
overall agreement with the experimental results. Indeed at shear rates of about 15!, where the
largest discrepancies occur, an error of less than 50 dyn/cm? in the determination of py would
account for the differences. Such errors are thought to be well within the experimental accuracy
of the measurements.

0.3p-
f—,% _____________________ second-order theory (slot)
o
- o
3}1 0.2~ °
= o)
----------------- Oveogaannn.
O o . TS o g T e, second-order theory (hole)
M o ® ° o O o oA
b ® ® .
® ® B
01 ] | |
0 5 10 15

$fst

Ficure 17. The value of the ratio py/P;. o, From the measurements of #(0) —  (s);
e, from the measurements of 7(0p/0r).

8.2. The normal stress at the rim

An independent check of pi; may be made from measurements of the normal stress p at the rim
of the cone-and-plate viscometer. From equation (2.5) and assumption (7.1) it follows that

b(R) = —pu(s) — B(5). (8.3)

Experimental estimates of p(R) may be obtained from the results discussed in § 7 by extra-
polating the logarithmic distribution of p(r) to the rim, as indicated in figure 10. However, as
indicated in § 7, the value of p(R) is dependent upon the conditions at the rim of the cone especially
when the sea-of-liquid configuration is being used. In view of this complication a detailed set of
measurements of p(R) was made for all available conditions at the outer boundary: the results
are shown in figure 18,

The measurements made with the free-boundary configuration are indicated by the dark spots
and are seen to lie in a fairly narrow band, with the exception of the measurements with the 5.67°
cone at the higher shear rates. The deviation of these latter measurements was discussed in § 7.
Using the sea-of-liquid configuration with the 1.72° cone the results for j(R) are in good agree-
ment with the free-boundary measurements. With the 3.27° and 5.67° cones in a sea of liquid the
values of p(R) are smaller in magnitude (i.e. p(R) increases) than the free-boundary measurements
because of an effective increase in the hydrostatic pressure at the rim arising from the Weissenberg
effect at the cylindrical surface of the rotating platen. The effect is particularly noticeable with
the 5.67° cone at the higher shear rates; a rough quantitative account of its influence is given
in appendix C.
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Equation (8.3) also applies at the rim of the plate-and-plate viscometer if the boundary
condition (2.2) is assumed. Accordingly some measurements of j(R) obtained with parallel plates
in a sea of liquid are included in figure 18: those shown are for a plate separation, ¢, equal to the
gap at the rim of the 3.27° cone (so that §(R) is the same in both instruments at the same value
of 2) and it is seen that the results are in good agreement with those for the 3.27° cone rotating in
a sea of liquid.

A
800f— 0
T |
g
o -
=]
)
3
3
ey, !
I 400~
2
A o
| | I
0 5 10 15

$[s—1

Ficure 18. The stress p (R) at the rim of the cone-and-plate viscometer (apparatus IV) for various cone angles and
various conditions at the outer boundary. Curves A and B are values of § (R) deduced from the corresponding
measurements of py; shown in figure 15. (N.B. The measurements from the parallel plates were taken with a gap
between the plates equal to the gap at the rim of the 3.27° cone.)

cone angle (°) 0 1.72 3.27 5.67
sea of liquid ] A o 5}
free boundary A ° n

The two curves shown in figure 18 are the predictions of p(R) derived from (8.3) in which the
values of py; shown in figure 15 were used. The overall agreement between these curves and the
experimental results provides a good confirmation of the estimates of pg. It was anticipated that
the 1.72° and the 3.27° cones used with the free-boundary configuration would most nearly
approach the theoretical conditions, in which case curve B gives too small a value for |j(R)|. On
the other hand curve A is in very good agreement with the data, except at shear rates below about
5s~1 where it appears to predict slightly too large a value for | 5(R)|. These discrepancies of about
50 dyn/cm? are thought to lie within the experimental accuracy of the measurements.

Having thus determined and checked the function pg(s) it now remains to see if the same
function can be used to resolve the anomalous values of P;(s) deduced from the measurements
made with the concentric cylinders (apparatus VI).
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8.3. Concentric-cylinders measurements

The normal-stress difference £, (§) may be determined from measurements of the normal stresses
pss acting on the inner and outer cylinders (cf. §2.3). But the preceding discussion indicates that
the methods used to measure p,, will give invalid results unless the data are corrected for the hole
measuring error py;. It is, however, more convenient to use the measurements from the concentric
cylinders to check the results for py;. Thus, on substituting (7.1) in (2.22) it follows that

puls) —pulso) = (o= +3 [ Rlo)do, (54)

where the subscripts i, o refer to the inner and outer cylinder respectively, and o = In p,,. In (8.4)
it is assumed for simplicity that the inertial correction discussed in § 3 (VI) is incorporated in the

term (po—pi).

A
A i .
2001~ inner °
o
T 0.2 0.5 1.0 20

=]

p/dyncm—2
I

-200f— ° °

o/:}o

~ 400t
Ficure 19. The stress § measured at the inner and outer walls of the concentric cylinders, apparatus VI. The ratio,

k, of the cylinder radii is 0.577; R, = 6.840 cm. The data points represent measurements made with holes of
diameter d. 2, d = 0.102cm; 0,d = 0.204cm; 0, d = 0.305cm; e, d = 0.508 cm.

The assumption that the measuring error py is independent of the dimensions of the cavity, for
very deep holes, and is determined entirely by the local, unperturbed, value of the shear rate near
the cavity entrance has been checked fairly extensively in the cone-and-plate and plate-and-plate
viscometers (cf. § 7). However, for measurements made with the concentric-cylinders apparatus,
the possibility arises that gy may depend upon the size of the cavity since a new length scale,
namely the cylinder radius, has been introduced: indeed, some tentative measurements of
Broadbent (see Pritchard 1970) using two different cavities suggest this to be the case. Conse-
quently a detailed experimental investigation into this possibility was carried out and it is now
believed, on the basis of the present results, that py is in fact independent of the dimension of
the cavity when it is very deep.

The current measurements were made with four different pairs of inner and outer cylinders.
Each inner cylinder was equipped with measuring holes of four sizes and each outer cylinder had
three holes of differing size so that a wide range of cavity dimensions was employed.{ Yet no

1 In the course of these measurements the ratio d/(R,— R;), where d is the diameter of the measuring hole, varied
between 0.020 and 0.346; the ratio d/R; lay between 0.012 and 0.074.
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systematic variation of p with the cavity dimension was observed in any of the measurements, an
example of which is given in figure 19. The three other sets of data are of a similar nature to that
shown in figure 19 (with the exception that one set displays more scatter than occurs in the other
measurements), so that we feel justified in using approximate curves that fit the data in the mean
to represent the values of p; and p, in further computations. Moreover it is felt that these results
provide strong evidence in support of assumption (7.1) that the function py = py(s). Although

A _.—
400 /./
7
g
Q
5 |
.(,)O .
&
S [y // 0.577
s |
S o | I |
&0
800
400
]
0 15

Sfs7t

F1cure 20. The hole error py(5,) — pr(s,) determined from the concentric-cylinders measurements. Curves A and B
are estimates of the same quantity made from the respective curves of figure 15. k = 0.700: o, R, = 8.303 cm;
o, R, = 6.840cm. k = 0.577: o, R; = 6.840 cm. x = 0.850: o, R, = 8.303 cm.

these findings are at variance with the above-mentioned results of Broadbent, the resolution of the
conflict most probably lies in the very large differences Broadbent observed in one of the sets of
measurements between the clockwise and the anticlockwise senses of rotation of the inner cylinder;
Jiwas taken to be the mean value of the two readings. This anomaly in Broadbent’s measurements
is thought to occur because the axis of the measuring hole did not lie exactly along a radial
direction. Accordingly, new cylinders were manufactured for the present experiments in which
great care was taken with the drilling of the holes, with the result that the measurements in each
sense of rotation were in good agreement.
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Following these preliminaries we are in a position to evaluate the right-hand side of (8.4), for
a given value of k, thereby estimating pg (5;) — py($o). The results of the computations for each of
the sets of measurements made with apparatus VI are shown in figure 20. The two sets of measure-
ments made at « = 0.700 give values of p(5;) — pg (so) differing at most by 50 dyn/cm?, which we
anticipate to be well within the experimental accuracy.t For shear rates §; greater than about
4 s~ these results are in good agreement with the value of py(§i) — pr(so) derived from curve A of
figure 15, especially if one considers that both methods of determining py(5i) — pu(so) are liable
to sizeable experimental errors. The results for k = 0.577 show very good agreement between the
measurements of pg (i) — pr (o) and the value deduced from figure 15 (curve A), except for shear
rates i less than about 5s~!; but in order to evaluate the right-hand side of (8.4) at these shear

o
o
50 (@) .
o
[o]
T o = '
g o 5 gt 100 o 15
o o o
>~
% -501-o °
o]
=100 o °
© o © o o °
0.1
(®)
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Q o ' o © © 15
o
?c)> o © °
- o]
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Ficurgk 21. The secondary normal-stress difference P,(s). (a) The value of P,(s) determined
from the curves of figures 6 and 11. (b) The ratio of Py(s) to Py(s).

rates the function P, () was extrapolated beyond the range of shear rates over which it had been
measured. The uncertain part of the curve is shown as a dashed line. For k = 0.850 the agreement
between the measurements and the predictions from the py values is not as successful as in
the two other cases, but because of technical difficulties encountered with the electronic part of
the measuring system at the inner cylinder, the reproducibility of the results was poor and this set
of measurements is less reliable than the other cases; even so, the agreement between the estimates
of pu (i) — pu(So), for values of §; in excess of 4571, is fairly good.

On the other hand, when §; < 4571, there is a small discordance between the measurements of
pu(S$i) — pu(So) and the predictions made from figure 15, and since the nature of this disparity is
the same in each case there would appear to be some small systematic errors in the data. These

1 It is difficult to give a good estimate of the experimental errors associated with these measurements, but it is
clear from the reproducibility of the readings of #; and p, shown in figure 19 that an error of + 10dyn/cm? is not
unlikely in either of these measurements. If we assume a similar accuracy for pg(s;) and py(s,) we see that (8.4)
cannot be expected to balance to within +40dyn/cm?, without taking into consideration the accuracy of the

numerical integration required in the equation. In reality the accuracy of the measurements, especially those of py,
is less precise than this.

42 Vol. 270. A.
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discrepancies are consistent with the suggestion made in § 8.2 that the value of py indicated in
figure 15 (curve A) is slightly too large at shear rates up to about 552

9. THE SECONDARY NORMAL-STRESS DIFFERENCE

From the measurements of P, (§ 6) and of P, + 2P, (§ 7) the secondary normal-stress difference
P, is readily found and is shown in figure 21 (a). In figure 21 () the ratio P,(s)/P,(s) is shown. Tt s
difficult to estimate the accuracy of this measurement of £,, but if we assume that both £, and
P, + 2P, have been correctly determined to within 2 9, the error possible in F,is + 40dyn/cm? at
§=1s71 +120dyn/cm? at§ = 55! and +280dyn/cm?at§ = 1557,

Because of the good self-consistency of all the experimental results discussed above, we place
a high degree of confidence in the measurement of P, shown in figure 21. Itis interesting that these
results suggest that P, is an order of magnitude smaller than P, and, if the results are taken at face
value, that B,($) changes from a negative quantity at low shear rates to a positive quantity at
shear rates in excess of about 125!, But the errors inherent in the measurement could easily
mask this latter characteristic of P,.

Having now established an estimate of ,(s) we shall proceed to compare it with other measure-
ments of the function.

7000~
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Freure 22. Examples of the dependence of the normal force F on the separation ¢ in the cone-and-plate viscometer,
apparatus I. A: §(R) = 12.62s71, B: §(R) = 4.22571. The dashed lines indicate the gradient (3F/dc),_, needed
for the Jackson & Kaye method of determining P, to give agreement with the results of figure 21.
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9.1. The Jackson & Kaye method

A method of determining P, proposed by Jackson & Kaye (1966), is to measure the normal
thrust F acting on the plate of a cone-and-plate viscometer for various values of the parameter ¢
(see figure 1) and thereby to determine the gradient (0F[0c),_,; Py(§) may then be deduced from
equation (2.12).

2000

I
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Ficure 23. Estimates of Py(s) from the Jackson & Kaye method are compared with the estimate of P, of figure 21.
0, Measurements made on apparatus I; ®, measurements made on apparatus II, o, approximate values of
P, obtained from apparatus I'V.

Two examples of the measurements of #'(¢) are shown in figure 22, and it was from the smooth
curves approximately representing these data points that the slopes (0F/0c),_, were estimated.
But to evaluate P,(s) from (2.12) the quantity d P (s)/d In § is needed, and this was derived from the
measurements of P, (§) in a similar manner. However, in determining dP,/dIn§ a check on the
accuracy of the differentiation may be carried out by plotting P, as a function of both § and In §
and then estimating the gradient dP;/dIns$ from two different curves. The values of d7/dIn s
found by these means differed by less than 2 %, in all cases, suggesting that the estimates are not
too inaccurate. The values of P, obtained from apparatus I by this procedure are indicated by
the circles of figure 23. The results are not in agreement with the estimate of P, given in figure 21.
Unfortunately the errors associated with the determination of P, by the Jackson & Kaye method
are likely to be fairly large, and rather difficult to estimate with any certainty. Accordingly, drawn
in figure 22is the gradient 0F/0c¢ that would make the value of P, from the Jackson & Kaye method
agree with the value of P, of figure 21, and it is seen that only a small change in 0F/0¢ is needed to
account for the large discrepancy in figure 23.

42-2
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Anindependent measurement of P, using the method of Jackson & Kaye was made on apparatus
IT at Madison by Dr E. K. Harris, Jr. In this case, however, polynomial curves were ‘fitted’ to the
data] by the method of least squares, and the appropriate gradients deduced from these curves.
The resultant values of P, are shown in figure 23; they do not agree with the estimate of P, given
in figure 21.

Yet another estimate of P, by the method of Jackson & Kaye was made, in this case using
apparatus I'V. The normal-stress distribution py,(r) was determinedy at various values of ¢, over
an annular section of the plate, from which the normal thrust /¥ acting on that annular region was
calculated. Then approximate values of P, were found from (2.11) by neglecting the term
(2R;/R) dP,/d In . Estimates of F were made at six values of ¢ lying in the range

—0.040 < ¢/Rtan f < 0.101

and a straight line, chosen by the method of least squares, was used to represent the data points.
The standard deviation of the regression was less than 19, in each case, and consequently the
slope of this line was assumed to be a good approximation to (0F/d¢),_,. The estimates of P, thus
determined are also shown in figure 23: they are not in accordance with the value of P, from
figure 21, and, if anything, they confirm the other estimates of P, found by the Jackson & Kaye
method.

A further confirmation of the results for P, obtained by the Jackson & Kaye method is described
in appendix D.

9.2. The Marsh & Pearson method

This method of determining F, is similar to that of Jackson & Kaye, but the force F and the
quantity 0F/0¢ may be measured at any given value of ¢, with the exception of ¢ = 0; P, is then
computed from (2.14).

By following similar procedures to those outlined in § 9.1 the values of F and

m(= —0InF/0lnc)

were determined for a chosen value of ¢. The resultant values of F,, computed for three different
values of ¢ are shown in figure 24: the results are neither in agreement with each other nor are
they in agreement with the estimate of P, of figure 21. A possible explanation of this phenomenon
is that a small systematic error in the measurement of (P, — (2 + m) F/mR?) will in effect be magni-
fied when it is multiplied by the factor (1 + R tan f/c) (cf. (2.14)). For example, with the measure-
ments made at ¢/Rtan f = 0.093 a systematic error of only 19 in either P or in (2 +m) F/TR?
would result in a systematic error in P, of about 1000 dyn/cm?at a shear rate of 15s~1; even at
the largest value of ¢/R tan £ used in the experiments the magnification factor is about 4. Thus, in
view of the large errors associated with this procedure, it is felt that the estimates of £, made at the
widest separation are in as close an agreement with the estimate of figure 21 as could be expected.
On the other hand, the estimates of , made at the smaller separations are in such poor agreement
with the estimate of figure 21 that it would appear as though some systematic influence is giving
rise to the disparity.

An estimate of P, by the Marsh & Pearson method was also made at Madison using the curve-
fitting techniques outlined in § 9.1. The results of these measurements are shown in figure 24 and
again the results suggest that P, has a magnitude far in excess of that suggested in figure 21.

1 Itshould be noted that the measurements of P, (§) made at Madison (see figure 9) were used in thiscomputation.
No measurements of F(¢) were made for values of ¢ < 0.

1 The stress py, was determined from measurements of § and the function py of figure 15 (curve A) using
assumption (7.1).
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9.3. The Kotaka et al. method

As aspecial case of the Marsh & Pearson method the plate-and-plate viscometer may be used to
deduce P,. In this case f# = 0 so that the factor (1+ Rtanf/c), which greatly magnified the
experimental errors in § 9.2, is of less importance and the estimate of P, is correspondingly more
accurate. This method of determining P, was first proposed by Kotaka et al. (1959).
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Ficure 24. Estimates of Py(s) from the Marsh & Pearson method are compared with the estimate of P, of figure 21.

o: ¢/Rtan f = 0.093; apparatus I. &, ¢/Rtan f = 0.228, apparatus I; o, ¢/Rtan § = 0.358, apparatus I:
e, measurements made on apparatus II.
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Bu = Ficure 25. The normal force I7 in the plate-and-plate viscometer, apparatus I. o, ¢ = 0.175cm; e, ¢ = 0.219 cm.
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For the plate-and-plate viscometer it follows from (2.17) that the normal force F' acting on the
plates is, for a given material, determined by the shear rate at the rim of the plates and is inde-
pendent of the separation, ¢, between the plates. That this is observed in practice is shown in
figure 25 where, for two different plate separations, the values of F agree to within the experi-
mental scatter of the data. Similar results had been obtained in §8.1 in connexion with the
measurements of the distribution of the normal stress p,,(r). From the smooth curve used to
represent the data of figure 25 the gradient 0F/0s(R) was determined and F,($(R)) accordingly
estimated via (2.18), the results of which are shown in figure 26. Again the estimate of P, is not in
good agreement with that of figure 21, but in view of the errors associated with the experiments
the discrepancy is not seen to be significant.
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Ficurr 26. Estimates of P,(s) from the method of Kotaka et al. are compared with the estimate
of P, of figure 21. o, Apparatus I; e, apparatus II.

Also shown in figure 26 are the results of some measurements made on apparatus IT at Madison.
In order to estimate P, in this case, the function F(§(R)) was approximated by a polynomial
expansion in §(R) from which the gradient 0F/0s(R) was determined.

The two estimates of P, made using the method of Kotaka et al. are in good agreement with
each other.

9.4. Discussion

In § 9 have been presented measurements of P, made by four different methods. The results of
the first of these measurements were derived from the data of §§ 6, 7 and are given in figure 21.
Tt was assumed throughout § 9 that this data represents P, to within the experimental accuracy.
The reasons for choosing the results of figure 21 over the other measurements of P, were because
the experimental error is much smaller than in the other cases, and because the internal consistency
of the data of §§ 6 and 7, as indicated by the results of § 8, provides a basis for accepting the
measurements. |

1 After reading a draft of this paper Professor A. S. Lodge pointed out a method of determining the combination
P, + P,. For torsional flow between parallel plates we find from (2.1) and (2.3) that
Py ($(R)) + Py($(R)) = $(R) [0/05(R)] (p33(0) — p33(R))- (a)
At r = 0 the stress is isotropic and p35(0) = p,,(0); moreover py; = 0 in this flow (cf. §8.1), so that the measurements
of p,, made in apparatus IV can be applied to (a). For a free boundary at the rim of the apparatus we may take
Psa(R) = 0 (cf. (2.2)), but unfortunately measurements of this flow were made only with the sea-of-liquid con-
figuration and so the term $(R) (Opsq(R)/05(R)) must be included in (a). In spite of the fact that the data for #(0)
are not detailed enough to adequately define a derivative, an estimate of P, + P, has been made using (a). Neglecting
the term in pgs(R) we find that: at § = 4.55~%, P, = — 175 dyn/cm?; and at § = 11.0s7%, P, = 570 dyn/cm?. Estimates
of the term in py,(R) were made from the data for the cone-and-plate apparatus by a comparison of the measurc-
ments of § (R) for the free-boundary configuration with those for the sea-of-liquid configurations, and also from a
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The measurements made by the Jackson & Kaye method do not agree with the results of
figure 21, though it must be said that the experimental error associated with this method is quite
large: at the highest shear rates the results are probably not accurate to within + 1000 dyn/cm?.
Moreover, it has recently been pointed out by Cowsley (1970) that the Jackson & Kaye method
may be particularly sensitive to small departures of the flow field from the motion hypothesized
for the cone-and-plate apparatus since the quantity 0F/d¢, needed to evaluate P, (see (2.12)),
does not have a defined first derivative as ¢ — 0. Indeed an indication of this property can be
seen from the experimental data by assuming that the measurements of P, and P, are known
accurately, and that the total thrust #(c) is correctly measured, then from the formulae (2.11)
and (2.12) the function 0F/oc may be found. The outcome of such a procedure is shown in
figure 27 for a particular angular velocity of the cone, and it should be noted that similar results
are obtained for the other cone speeds. Also shown in figure 27 are the values of 0F/0c measured
directly from the function F(¢) (cf. figure 24) and we see that these results give no indication of the
expected singularity in 02F/0c? at ¢ = 0. On the other hand, the resolution of this anomaly has,

:

(2/mR?) (0F[0c)/dyn cm—3

=
0 0.2 04

¢/Rtan f
Ficure 27. The quantity 0F/0¢ in the cone-and-plate apparatus plotted as a function of the gap width ¢, for

£2 = 0.22857L. The shear rate at ¢ = 0 is 4.2357%. —~~—, Determined directly from the measurements of F ©);
, determined from (2.11) and (2.12) on the assumption that P;, P, and F have been correctly measured.

to date, been elusive: the effect of grinding off the tip of the cone would appear to be unimportant
on the basis of the arguments presented in § 2.1, and because the results from the total-thrust
measurements of apparatus I gave similar values of 0F/0¢ to those from the stress-distribution
measurements of apparatus IV, in which the central area of the plate was excluded from con-
sideration: the agreement between the results from apparatus I and apparatus IV, in which
different boundary configurations at the rim were employed, would appear to rule out the
influence of secondary flows near the rim as giving rise to the discrepancy; large scale secondary
flows in the gap might be causing the anomalous results, but it is very difficult to estimate the

calculation of the kind described in appendix C. I'rom these estimates it appears that the term §(9p44(R)/0s) has a
magnitude of about 150dyn/cm? at § = 4.5s5-1, and 350dyn/cm? at § = 11.0s~%., Thus from () we deduce that
P, x —25dyn/cm?® at §=4.55"1, and P, ~ 920dyn/cm? at § = 11.0s~%; the corresponding values of P, from
figure 21 are —118dyn/cm? and —20dyn/cm?. The agreement between these two measurements is not very close,
but the errors associated with the present computation could easily account for the differences. On the other hand,
it is interesting that the trend, indicated in figure 21, towards positive values of P, at the higher shear rates is also
reproduced in the present test.
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influence of this source of error. In addition the observation discussed in appendix D gives results
that are essentially in agreement with the measurements from the Jackson & Kaye method. These
results were obtained by a method closely related to the Jackson & Kaye method, but one in
which the quantity 0F/d¢ did not have to be evaluated.

The measurements by the Marsh & Pearson method are in agreement with the results of
figure 21 only at the largest separation of the cone and the plate used in the test. Also the estimates
of P, from the plate-and-plate apparatus, using the method of Kotaka ¢t al., are in fairly good
agreement with the results of figure 21. Thus on the basis of these results it appears that the
measurements of P, made at small values of ¢/R tan f differ substantially from the other, inherently
more reliable, measurements of F,, and that the large errors associated with the method render
measurements virtually useless when using small values of ¢/Rtan . On the other hand, the
suggestion made by Cowsley (1970) of working with a re-entrant cone (# < 0) substantially
reduces the errors and is probably the most reliable way of using the Marsh & Pearson method.

In view of the large amount of work involved in deducing P, by the methods discussed in § 9,
and because of the difficulties encountered with these methods, it may be that the direct method
of determining P, suggested in appendix A is worth further investigation.

10. IN CONCLUSION

In conclusion I shall briefly summarize the results of this set of measurements and discuss some
of the impressions gained from the project.

The primary normal-stress difference was determined by three methods. Of these the normal
force in the cone-and-plate apparatus and the stress-optical measurements gave values of P,
which are in very good agreement, except at the higher shear rates where some experimental
difficulties arose with the optical measurements. A method of resolving these difficulties was
discussed and, by employing this method, extremely good agreement between both sets of data
was attained over the whole range of the experiment. Similar agreement between the mechanical
and the stress-optical measurements has been reported by Kaye et al. (1968), without the experi-
mental difficulties encountered here, and it would appear that the combination of these two
measurements provides a very useful experimental tool.

The value of P, obtained from measurements of the difference of the stress p,, across the gap of
a pair of concentric cylinders did not agree with the other measurements of £, unless a hole-
measuring error (fy) was introduced. Taking this error into account the measurements from the
concentric cylinders then showed good consistency with the other values of P, except for a small,
apparently systematic, discrepancy at the lower shear rates which we are unable to explain. On
the other hand, the discrepancy is such that it lies within the possible experimental error of the
results. An interesting feature of the measurements in the concentric cylinders was that the
quantity p was independent of the size of the hole in these experiments. This was unexpected in
the light of some previous results of Broadbent (see Pritchard 1970) who made measurements with
two different sized holes: the results were considered tentative at the time since one of the holes
gave stress readings that differed significantly according to the direction of rotation of the
cylinder, but since both these readings were smaller in magnitude than the reading obtained with
the hole it was suggested that the size of the cavity may affect py;. The present results indicate that
this is not the case and thereby give warning that taking averages to eliminate small effects arising
from asymmetries in a piece of equipment may be unreliable with nonlinear fluids.
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The measurements of the distribution of the normal stress p,, made with apparatus IV, were
used to determine the quantities P, + 2P, and py. A series of measurements in the cone-and-plate
apparatus was made in which the cone angle and the boundary conditions at the rim were varied:
the results suggest that these factors have little effect on the gradient r(0p/0r), except possibly in
the case of the 5.67° cone at the highest shear rates. However, as Adams & Lodge (1964) were
careful to point out, the axial movement of the rotating member may have an important influence
on the results, especially at the lower cone angles. Adams & Lodge suggest that the amplitude of
this movement should be less than about 5 x 10-6cm, but a detailed investigation of its importance
should be carried out, since even at the low amplitudes suggested it is possible that with the very
viscous materials and with the small angled cones (# ~ 1°) employed some nonlinear processes
may be operating which yield invalid results when averages are taken.

In order to analyse the data it was postulated that py is a function only of the shear rate of the
undisturbed viscometric flow at the position of the hole. This proposition has not yet been proven
theoretically but the results of a number of experimenters support it (except for a pathological
example described by Pritchard (1970) which indicated a small influence of the shape of the
cavity on py); indeed, for sharp-lipped, circular, holes the current experimental results and those
of previous workers suggest that py; is completely independent of the hole size, assuming that the
cavity is deep and that the flows are sufficiently slow. The proposition has been proven for the
case of a second-order fluid flowing past a two-dimensional slot, and an argument outlined in
appendix A suggests how it could apply to a second-order fluid flowing past a circular hole. In
the present experiments, with circular holes, the ratio py /P, appears to be about 0.16 (cf. figure 17).
These results are in very good overall agreement with the theoretical predictions for the second-
order-fluid model.

The measurements of the secondary normal-stress difference suggest that the methods of
Jackson & Kaye and of Marsh & Pearson may give inaccurate values for P, coupled with large
inherent experimental errors. The reasons for the anomalies observed in these experiments are
not known, though it should be noted that they could arise either from non-ideal flows in the
apparatuses or from a violation of the simple fluid assumptions. On the basis of the present
experiments it would appear that the most reliable methods of determining P, are to use the
normal-stress distribution r (0p/0r) in the cone-and-plate apparatus or the method of Kotaka et al.
But, to avoid the need of relying on other data in order to measure P,, direct methods of deter-
mining P, may prove to be the most attractive. For example the axial flow in the annulus between
a pair of concentric cylinders (see Lodge 1964, p. 214) can be used to give a direct measurement of
P,, although there are a number of experimental difficulties in making the measurements and the
computation of the results is rather complicated. Alternatively, the method proposed in appendix
A avoids these experimental and computational difficulties, and accordingly it may be a useful
way of determining P, directly.

I am indebted to the Science Research Council for support while at the University of
Manchester Institute of Science and Technology, and to Professor R. B. Bird for support from his
grants from the University of Wisconsin Graduate School and the Petroleum Fund of the
American Chemical Society (Grant 1758-C).

In addition I should like to express my thanks to: Mr A. Lowe for his considerable help with the
experiments; Dr A. Kaye for kindly making the birefringence measurements and for his helpful
comments; Dr I.F. Macdonald for designing some modifications to the concentric cylinders
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(apparatus VI); Professor A.S.Lodge for his suggestions and comments, and for his help in
transporting a portion of the test liquid to Madison; Dr E. K. Harris, Jr. for making a series of
measurements with the rheogoniometer at Madison; and Dr J. Meissner of B.A.S.F. (Ludwigs-
hafen) for the gift of the polymer.

APPENDIXES
A. THE INTRINSIC ERROR IN THE USE OF A CAVITY TO MEASURE fy,

We consider a two-dimensional shear flow # = §y, § being constant, above a surface whose upper
boundary lies along the x-axis, as shown schematically in figure A 1. Puncturing this surface is a
slot which opens into a larger cavity of extreme depth and at the bottom of which is a thin
flexible diaphragm. In such a situation the stress near the diaphragm is isotropic and uniform and
may therefore be balanced exactly by a pressure (p_,) acting on the opposite side of the
diaphragm, a pressure which returns the diaphragm to the position it occupied before the shear
flow was generated. The difference between the stress p,,, acting on the surface y = 0 and the
stress p,,, acting on the diaphragm (= —p_,) is equal to the error introduced by this method of
measurement. For a uniform shear flow, as considered here, the stress p,,, is the same throughout
the undisturbed fluid, so that the measuring error is given by the difference between the stress p,,,
far above the fixed surface and that near the bottom of the cavity. We shall call this error pg. The
upper surface driving the flow is assumed to be a large distance (i.e. many slot widths) above the
fixed surface.

For slow flows of a Newtonian fluid past such a cavity the streamline patterns are necessarily
symmetric about a plane passing through the centre of the hole and perpendicular to the flow.
It follows immediately from a balance of forces, together with the symmetry of the stress distribu-
tion, that p,, is constant along the centreline of the cavity, so that py = 0. But with more com-
plicated fluids the situation may be quite different for, even if the streamline pattern retains its
symmetry, nonlinear contributions from the normal stresses will in general give rise to asym-
metries in the shear stress p,, about the plane through the centreline of the hole. A balance of
forces now indicates that p,, is not constant along the centreline of the cavity, thereby suggesting
non-zero values for py.

Thus we shall assume, for simplicity, that the streamline patterns retain their symmetry for the
more complicated fluids and that the ‘memory effects’ of the fluid are unimportant. These
conditions apply, in particular, to the case of slow, two-dimensional, flows of a second-order
fluidt (see Tanner 1966). Then, to exploit the symmetry of the flow field we introduce local
coordinates based on the streamsurfaces of the flow, thereby preserving the symmetry of the
stresses about the centreline of the hole. [ It is convenient to use orthogonal coordinates (£;, &,, &5)

1 For sufficiently slow flows the second-order fluid is a valid approximation to any simple fluid (see Coleman &
Noll 1g60). For steady flows it has a constitutive relation, in Cartesian components, of the form (see Markovitz &
Coleman 1964) )
D+ D0 = Noess+ Poeaeri+7Yo (v,, @4' Cip a’; +€p; a—p

where e;; = (0v;/0x;+ 0v;/0x;) and v; are the velocity components; p is an isotropic pressure; %, o, Vo are material
parameters which are strictly constant over the range of validity of the approximation.

1 Roughly speaking, the flow in the region near the centreline of the hole is similar to that generated by a cylinder
rotating about its axis in a large expanse of fluid: that is, fluid particles move locally, in circular paths, the centres
of which all lie on the centreline of the hole. Thus one may introduce a ‘local’ cylindrical-polar coordinate system
based on the local curvature of the streamsurfaces. Then in the radial direction a balance of forces on a fluid element
is given by (cf. Lodge 1964, pp. 190-192)

70pas|Or = P13 — Pasy @)
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in which the 1-direction is parallel to the fluid motion, the 2-direction is normal to the stream-
surfaces, and the 3-direction forms the orthogonal triad; let 4, %,, %5 be the ‘scale factors’
associated with these coordinates. Now the symmetry of the present problem requires that
derivatives with respect to £, vanish on the centreline of the hole,] and using this condition in the
stress equations of motion (p;; ; = 0) we find in the 1- and the 2-directions respectively (e.g. see
Happel & Brenner 1965, p. 489) that

%21_ 2[721%_ 0

oz, Thog " (A1
Opon 1 0k
and a‘f; = (p11—ba2) jl‘lgg; (A2)

Moreover, the symmetry of the flow field implies that the 2-direction lies along the centreline.
Thus, using (A1) to substitute for A;1(04,/0&,) in (A 2) and integrating (A 2) along the centreline
of the hole, we find that

gy -

Pol&) = pultl) [ = —pud = —5 [ Pobnbuag, (A3)
where £ and &% are the values of &, at the upper plate and at the bottom of the cavity respectively.
If the line of integration passes through the centre of a vortex the present coordinate system is not
applicable at that point. The integration must then be carried out in a piecewise manner. The
expression (A 3) gives the intrinsic measuring error for any material in slow flows for which the
streamline and stress patterns are symmetrical, in the way discussed above. In particular (A 3)
applies to the case of a second-order fluid in which (py; — p,,) is proportional to p3;: for such fluids
the integral can be evaluated immediately and, when the hole is extremely deep so that the shear
stress vanishes at ££, we have that

i = £(pi— P22 (A4)

'I'his result is in agreement with the calculation of Tanner & Pipkin (1969).

If, on the other hand, the fluid flows over a circular hole, as opposed to the slot considered
above, there will be a curvature of the streamsurfaces at the centre of the hole in the 1-3 plane.
Assuming that the streamsurfaces are locally spherical at the centreline of the slot Higashitani &
Pritchard (1971) have used similar arguments to those outlined above to suggest that py, for a
second-order fluid, is approximately given by

pH:%(Pl_Pz)zT, (A5)

where P, and P, are the primary and the secondary normal-stress differences respectively.
Finally, let us return to the geometrical configuration shown in figure A1 and consider the

experiment in which the upper plate is moved in a direction parallel to the direction of infinite

extent of the slot. We shall assume that the flow is unidirectional and, although this condition

where 7 is the local radius of curvature of the streamlines and the 1- and 2-directions are defined in the same way as
that described in the text. In the tangential direction the force balance yields

70py [Or = — 2py;. (ii)

Using (ii) to change the independent variable to p,, we may then integrate (i) along the centreline to yield the same
result as that given in (A 4).

t If an applied pressure gradient is used to drive the flow an additional term, /;;1(9,,/0§,) must be included
in (A1).

43-2


http://rsta.royalsocietypublishing.org/

. \
_SE )

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

550 W.G.PRITCHARD

will be violated in general, experiments suggest that it is a good approximation to the actual flow
(cf. Kearsley, unpublished experiments on flow along a square duct). Then to determine the
intrinsic error in determining p,, in this example we base our coordinate system on the (con-
tinuous) surfaces of the flow field defined by the contours of constant velocity. The coordinates
are then chosen in the same way as in the previous examples. Now the interesting feature of the
present arrangement is that, for stable flows, the velocity field is symmetrically distributed about
the centreplane of the slot irrespective of the properties of the material. Thus the symmetry
arguments employed above no longer embody any restrictive assumptions about the kind of
material under consideration; inertial effects however are again neglected.

u

e

7 77—

/ liquid

L SR S S
P

Ficure A 1l. Schematic arrangement of the method used to measure the stress p,,.

Accordingly the respective stress equations of motion in the 1- and 2-directions, at the centreline
of the slot, are

Opar D210k,
22,088 0, A6
o€, " O, (46)
) 0pgs B 1 0k,
and 6’52" = (I’zg “[733) jl"?;é‘g; (A 7)

In deducing these equations it has been assumed that the imposed pressure gradient 9p,,/0&; = 0;
the choice of the coordinate system ensures that the terms involving the other shear stresses do not
enter (A 6) and (A 7). Thus, using (A 6) to eliminate /5 from (A 7) and noting that (s, — p53) and
ps1 are functions only of the local shear rate in the material, we may change the independent
variable from £, to p,,; then, on integrating along the centreline of the slot, we find that

Py —_
PP ~pun(0) [ = —p] = [Pl (A%)

The slot is assumed to be extremely deep so that the shear stress vanishes at the bottom; the shear
stress at the upper surface is Py,. Differentiating (A 8) with respect to P,, we see that

P21 de/dP21 = (I’zz “[733)P21> (A 9)

which provides a direct method of determining the secondary normal-stress difference. The above
arguments are described in greater detail by Higashitani & Pritchard (1971).
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B. THE TEST USED BY MARKOVITZ (19654a)

The test carried out by Markovitz (1965a) to check the consistency of his measurements was as
follows:

(i) The primary normal-stress difference was determined from the difference in the normal
stress p,, across the gap of a pair of concentric cylinders, as outlined in § 2.3.

(ii) The combination P, + 2P, was estimated from the gradient of the normal-stress distribution
ba2(7) in the cone-and-plate apparatus, as indicated in § 2.1.

(iii) Knowing P, and P, the distribution of the stress p,,(7) in the plate-and-plate apparatus
may be predicted from (2.16).

8000f

4000}~ Y

stress/dyn cm—2
AN

| | |
0 5 10 15

$fs1

Ficure B 1. A test of (2.16). ——, Supposed measurements of g, (s) — g, (0) using parallel plates with apparatus IV ;
———, the function

Pys) + ﬁ) (Py+ Py {de

determined from measurements in apparatus I'V and apparatus V1.

From the measurements made in the present series of experiments we are able to repeat
Markovitz’s test. The value of P, chosen from the two sets of results for measurements in the con-
centric cylinders was that taken at k = 0.577 (cf. figure 6). The function P, + 2F, from the cone-
and-plate apparatus is shown in figure 11. From these two sets of data the distribution py,(r) in the
plate-and-plate apparatus was deduced, and is indicated by the dashed line of figure B1. The
direct measurements of the stress distribution, taken from figure 14, are represented by the full
line in figure B1. The two curves do not agree in the present experiment.

43-3
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C. THE INFLUENCE OF THE SEA OF LIQUID ON j(R)

In§§ 7and 8 a number of experiments were discussed in which attempts were made to investi-
gate the influence of the boundary conditions at the rim of the cone-and-plate apparatus. One
interesting feature of the measurements of p(r) is shown in figure 10 from which it appears that
p(r) = Oatavalue ofr (= r,) which is nearly independent of the shear rate. The same phenomenon
was also observed with the 1.718° cone rotating in a sea of liquid, but with the 5.67° cone there
was more variation in the value of 7, than in the other two cases. When using the free-boundary
condition there was also more variation in the value of 7, than that shown in figure 10. In this
appendix we shall try to give a rough quantitative account of this phenomenon for the sea-of-
liquid experiments.

From the theory of § 2.1 it follows for the cone-and-plate apparatus that

poalr) = Pt (P+2P) In (r[R). (1)

But the stress p(R) actually measured differs from P, because of contributions arising from the hole-
measuring error py, the Weissenberg effect in the sea of liquid (which we shall call py) and from
unwanted flow conditions such as secondary flows. The latter effects are neglected in the present
calculations. Thus we have that (cf. (7.1))

—P22 = P +pu—pw- (G2)
Then on substituting (G 2) in (C1) it follows that p(r) = 0 when
In (rg/R) = — (Py+pu—pw) | (P +2By). (@3)

To estimate the quantity pw we shall assume that it is equal to the normal stress exerted on the
wall of a long cylinder rotating about its own axis in a fluid of large radial extent. In effect we are
saying that the boundary condition (2.2), namely p33(R) = 0, is not valid for the sea of liquid
configuration and should be replaced by the condition pg3 = py, where pyy arises from the fluid
flow in the region 7 > R. A good approximation to py may be obtained from (2.22) by using power-
law relations to describe the material properties. Thus if P, = Ap§ and § = Zp%, it follows from

(2.22) that pw = (1/2B) P,(sw), (G4)

where sy is the shear rate at the wall of our hypothetical cylinder. Now, because of the power-law
relations, $y may be related to the shear rate § in the gap of the cone-and-plate apparatus. From

(2.3) we find that Syfs = 297 tan B, (C5)

and again, by virtue of the power-law relation, P,($y) may be written in terms of F(s), in

consequence of which b = (1/2B) (2% tan 8)5% P,(5)
= {$(B)[2B} Bi($), say. (G 6)
Then, putting pg/F, = A, (G 3) becomes
In (r/R) = — (Bo/ P+ A—$(8)[2B)[(1 + 25,/ ). (G7)

From (C 7) we now see that if A is nearly constant and if £,/F; < 1 (both of which are applicable in
the present case) the quantity In (,/R) is nearly independent of the shear rate §. On the other
hand, (C 7) depends upon the cone angle g, as suggested above, and using the appropriate values
of B (= 1.98) and #( = 2.65), for the present experiments, we can obtain a rough estimate of the
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dependence of In (r,/R) on f. For the purposes of this computation we shall assume that F,/F = 0
and that A = 0.16 (cf. figure 17). The results are shown in table C 1, and in view of the approxi-
mations involved, they are thought to be remarkably close to the observed values of In (ry/R),
thereby supporting to some extent the discussion of §§ 7 and 8.

Tasre C1
observation
B #(B)/2B A—p(B)/2B —1In (r/R)
1.72° 0.0545 0.1055 ~0.07
3.27° 0.0948 0.0652 0.043
5.62° 0.1404 0.0196 0.03-0.007

D. AN ESTIMATE OF THE SECONDARY NORMAL~-STRESS DIFFERENCE

In the course of the experiments in which P, was determined by the Jackson & Kaye method
(§9.1) it was observed, for small non-zero values of ¢/R tan £, that to a very good approximation
the measured stress p varies logarithmically with the radius over a large extent of the plate. In
§ 7 we described how the expected logarithmic distribution of p is observed when ¢/Rtan g = 0.

ZOOOI‘

§(R) = 17451

1000~ g~ o,

p/dyncm—2
/V

~Yh\ \\ rim

=]

r/cm

Ficure D 1. The normal-stress distribution 4 (r) in a cone-and- plate apparatus for various values of ¢ with the restric-
tion that §(R) = constant. The measurements were made on apparatus I'V with the sea-of-liquid configuration.
R=44lcm; f=3.27° e, ¢/Rtanf = 0; 0, ¢/Rtanf = 0.025; 2, ¢/Rtanf = 0.051.

However, in figure D Litis seen, with ¢/R tan § = 0.025, that p is well represented by a logarithmic
distribution over the radial extent of the measurement; indeed, even when ¢/R tan # = 0.051, it is
only the innermost point which deviates from the logarithmic distribution. Moreover the results
offigure D 1indicate that not only is the distribution of p very nearly logarithmic, but, by adjusting
the angular velocity £ so that §(R) is the same for each value of ¢/R tan f, all the values of b are
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closely represented by a common curve. We have used this observation to make another estimate
of P,.

From the assumption (7.1) it follows that the normal force I acting on the plate may be
separated into two components /and f corresponding to the stresses p and py; respectively. Thus

we have that F = F+f. (O1)

Let us now carry out the experiment in which £ is held constant, and the cone and the plate are
separated by an amount Ac from the position ¢ = 0. The normal force F thereby changes, to first
orderin A¢, by an amount (0F/dc) Ac. If now, at the separation Ac, we adjust the speed of rotation
by an amount AQ, the change in the normal force is given approximately by (0F/0Q) ,, AR and it
follows from (D 1) that

oF oF . oF oF of of
(.52 )0:0 Ac * (@)czAc AQ B (—6; )c=0 Ac * (55)0=Ac AQ * (é;)czo AC * (‘a—zg)c=Ac AQ (D 2)

The deduction made from the results of figure (D 1) is that, when §(R) is held constant, the sum
(0F[0c) o_o Ac + (OF[0R),,_, AR may be equated to zero, to within the experimental error. Since
$(R) is a constant, the quantities Ac and AR are related by means of (2.3) and we have that

AQ = {5(R)/R}Ac. (D3)
Equation (D 2) accordingly reduces to
oF $(R) (OF (o S(R) (Of
(@), % @)~ )., % (). (B4

In (D 4) the quantity (0F/0c),_, is already known as a function of £, and F, from (2.11); the term
containing (0F[0Q),_,, may similarly be written as a function of £, and P, and from (2.10) we

have that
oF _ R dp, 2 2 tan g c_]fg _1_ Ei_gl —(1}_12 ds
0 _“fR [273:6"‘(7 — ki) (c+rtanﬁ ds +r ds + ds @dr, (D5)

where § and 2 are related by (2.3). If we now make the assumption that d P, /ds and d7,/ds are both
constants over the range of integration it becomes a simple matter to evaluate (D 5). (For small
values of ¢/R tan f8 this assumption is nearly satisfied (cf. figures 6, 21 (a)), especially at the higher
shear rates). Accordingly (0F/0R) takes the form

10F _ , dB , dP,

r 1?-1—5+'2~a?’ (D6)

where I'; and I', are determined by the geometric quantities R;, R, ¢, f, Q. Following similar
arguments, together with the assumption that dpy/ds is constant over the range of integration, we
find that the terms on the right-hand side of (D 4) may be expressed as

woc . 'dlng woQ ~ 7ds

where 7, and 7, are also determined by the geometric properties of the apparatus. Then on sub-
stituting the various terms in (D 2) we find that

N I'itanp\ dP,  (y,R—7,) tanf dpy 2R, Ttanp) dP,
'R&(S>“‘("+(R~Ri)2)dlns Gory  ami T \R=k =) dme (P89
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which for convenience we shall write as

dP, . dp dP
P(s) = -K 1 LRy ¢ 2 D8
(%) 1dns T T s (D85)
TasLe D1
dpy/din; dpy/din i P,
$ Ac/Rtan K, dyncm~2 K, dyncm—2 K, dyncm~—2

11.00 0.004 0.330 0.394 0.391 ~ 1340
0.040 0.363} 4575 {0.720} 579 {0.318 — 1238
1.74 0.004 0.330 0.394 . 0.391 — 275
0,040 0.363} 957 {0.720} 103 {0.318 —274
0.69 0.004 0.330 s64 {0.394 00 {0.391 ~151
0.040 0.363} 0.720} 0.318 — 140

Since K 5 3 are O(1) and since the quantity (dF,/d In§) is expected to be much smaller than the
other terms of (D 84) we shall neglect the last term of this equation, and P, may be found directly
from (D 85). Some estimates of F,, thus computed, are shown in table D 1; the constants K;, K,, K
have been evaluated for the geometric properties of the apparatus in which the results of figure D1
were obtained.

The values of P, shown in the table are in agreement with the results found from the Jackson &
Kaye method, whereas in this case we have not had to evaluate the slope (0F/0c),_, from experi-
mental data.

Since dF,/ds appears to be negative the effect of the neglected terms would be to increase the
magnitude of £,. The influence of the sea of liquid, which was used in these experiments, has been
neglected in the computations in the belief that it would have a negligible influence on the results.
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